

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

The Novel Cast Aluminum-Cerium Heat Exchanger

Oak Ridge National Lab/ECK/Virginia Tech./UMD

Ayyoub Momen, R&D Staff

momena@ornl.gov

Project Summary

Timeline:

Start date: Oct 1, 2018

Planned end date: Sept 30, 2021

Key Milestones

- 1. Identify aluminum-cerium (AI-Ce) casting limitations (Sept 30, 2019)
- 2. Fabricate and evaluate 1 kW cast heat exchanger (HX) (Sept 30, 2020)

Budget:

Total Project \$ to Date:

- DOE: \$443K
- Cost share: \$10K

Total Project \$:

- DOE: \$1,327K
- Cost share: \$50K

Key Partners:

Project Outcome:

- Development of the first microchannel HX that is die-cast in one piece, including the headers, eliminating the need for brazing or welding
- Successfully development of a method of manufacturing low-cost high-pressure microchannel HXs that will increase the viability of several technologies and contribute to meeting DOE's energy intensity targets specified in the Multi-Year Program Plan
- Energy saving potential: 1.15 Quad

Team

HX, HVAC, and System Integration, Expertise

Al-Ce Alloy Inventors, Material Expertise

> HX Design Expertise

Multiphysics Modeling

Challenge

Problem Definition:

- HXs leak (joints are the weakest points)
- Mircrochannel HXs are expensive (manufacturing processes are expensive)
- High-pressure HXs are expensive (CO₂ HXs are very expensive)

- HXs fail in corrosive environments (i.e. In FL coastal regions HVAC condenser aluminum fins corrode within 5 years)
- Condensing furnaces' secondary HX is made of expensive SS alloys

Advice:

 Innovative manufacturing technologies and advanced alloys are needed to address these issues

Brief Background

- Aluminum was more expensive than gold in 19th century.
- In 1850, aluminum was \$37,200/kg, but gold was \$20,500/kg
- In 1884 when the Washington Monument was finalized, a 2.8 kg aluminum pyramidon was placed at the top
- In 1889, the Bayer, Hall process was developed, which significantly reduced the cost of aluminum extraction
- Today, aluminum is being used in HVAC, automotive, aviation, power generation, and other industries

Take-Away Message: A new material/alloy/manufacturing processes could potentially revolutionize many industries!

In 2015, ORNL invented the Al-Ce alloy under Critical Material Institute Funding!

AI-Ce Advantages

Castability

- Unlocks new potential geometries that otherwise cannot be cost effectively manufactured
- Leak resistance
- Customized headers that can minimize refrigerant flow maldistribution
- Corrosion resistance
 - Better corrosion resistance than conventional aluminum alloys
 - Reduced degradation of AI fins in **coastal** areas.
 - Indoor coils—avoids formicary corrosion that can cause refrigerant leaks in copper tubes
 - Corrosive exhaust gases
- Mechanical strength (including at high-temperatures)
 - High-pressure applications
 - High-temperature applications
- Lower manufacturing cost
 - Low-cost casting manufacturing process
 - Eliminates the need for post-heat treatment

Sand/DIE cast the whole HX in one piece to

- Eliminate the joints (source of the GWP refrigerant leaks)
- Reduce the manufacturing cost of HXs by 50% (by eliminating the expensive posttreatment and increasing throughput and automation)
- Increase the operating pressure of HXs by adding internal structures that cannot be achieved with conventional manufacturing processes (very important for CO₂ systems or HP water heaters)
- Increase the corrosion resistance

Approaches to Market

Manufacturing Al-Ce fin stock and extruded tubes

Casting headers to tubes

Casting complete part

Increasing manufacturing challenge

Increasing benefit from AI-Ce

Retain today's manufacturing techniques: gain strength and corrosion resistance

Viable manufacturing process: gain leak resistance and improved flow distribution and highervolume, next-generation HX production

Advanced casting: greatest benefit from material and process

AI-Ce Markets and Various Applications

Castability

- Novel geometries: advanced high-performance HXs including *aerospace, auto*
- Leak resistance: all applications, especially *flammable/toxic refrigerants, refrigeration*—high charge levels
- Customized headers—evaporator applications (building or mobile AC)
- Cost-major driver in *all applications*. Avoids volatility in copper price
- Corrosion resistance
 - Residential/commercial AC
 - Gas furnaces, secondary HX/waste heat recovery
- Mechanical strength (including high temperature)
 - CO₂ HPWHs, refrigeration
 - Furnaces, waste heat recovery

Impact: AI-Ce HX Market Potential

- HVAC
- HPWH
- Furnaces
- Refrigeration
- Waste heat recovery
- Automotive

Source: BSRIA, Interrelation/future trends in use of copper for air conditioning, May 2018

2025 forecast rate of *copper displacement to AI* in HVAC markets (2025).

Aluminum Microchannel Manufacturing

Extruded microchannels Small feature sizes: 0.1 mm fins, <1 mm channels

 Fin stamping, assembly, fluxing, drying, brazing in controlled atmosphere brazing (CAB) furnace

- Throughput: 500,000 units/year
- Manufactured cost: ~\$2-\$4/lb (excludes the capital cost/markup)

(Solvay)

Casting Processes with AI-Ce

Economics

- Material cost is comparable to conventional aluminum alloys
- Manufacturing costs are competitive
- Future advanced heat exchangers can reduce material mass >50% for same performance
- If new, advanced HXs can be cast, realizing significant efficiency gains and/or cost savings

Progress: Finding the Design Boundaries

Investigating what geometries can be cast/identifying challenges.

Progress: Al-Ce Die Casting Trial Performed at Scale

- Die casting studies require nearscale or full-scale trials
- Ingots Cast at Eck Industries
- Trial performed at TTE in Oak Ridge

Feasibility of AI-Ce alloy die casting has been demonstrated

4,000 lb of ingots made for casting trial

Has the potential to simplify the HX manufacturing process

Progress: Current Focus (March-April)

- Completion of physical property measurements associated with Al-Ce casting
- Corrosion testing
 - Intergranular and salt
 spray testing show
 significant improvement
 over conventional
 aluminum alloys
 - Currently looking at the resistance to sulfuric acid
- First cast trial

Progress: FEM Analysis on Supercomputer

Developing the model that can simulate the grain boundary under stress. When combined with the experimental data, the result of such study can tell us:

- What quenching rate can make the alloys stronger
- What quenching temperature can help to reduce fatigue
- The solidification impact on the casting process
- The appropriate cast design
- · How the casting parameters tie into the properties of the AI-Ce parts

Third Party Evaluation: Preliminary Ranking on Applications

• 1—most favorable, 5—least favorable

Application	Heat Exchanger Manufacturability	Charge/ Leak Reduction Potential	Non- Energy Benefit	HX Market Size	Energy Saving Potential	Overall Score (Rank)
Residential AC/HP	3	3	4	1	1	12 (1)
Gas-Fired Furnaces	2	5	2	3	1	13 (2)
Gas-Fired Water Heating	1	5	3	2	2	13 (2)
Commercial AC/HP	3	2	4	3	3	15 (4)
Electric Water Heating	2	3	3	4	3	15 (4)
Commercial Refrigeration	4	1	3	4	4	16 (6)
Residential Clothes Drying	2	3	3	4	4	16 (6)

Progress: Stakeholder Engagement

Engagement:

Weekly meetings: ORNL-VT Biweekly meetings: ORNL/ECK/UMD/VT/OTS

Publications/Inventions/Reports:

Invention Disclosure 201804134, DOE S-138,801 Completed the 3rd party market evaluation report

Industry input:

Remaining Project Work

- Identify AI-Ce casting limitations
- Design and develop 1 kW HX cast
- Fabrication and evaluation
- Improvements
- Cost analysis and accelerated life testing/commercialization activities

Thank You

Oak Ridge National Lab/ECK/Virginia Tech./UMD Ayyoub Momen, R&D Staff

momena@ornl.gov

REFERENCE SLIDES

Project Budget

Project Budget: \$1,327K (open lab call 2018) Variances: None Cost to Date: \$139K (Through March 2019) Additional Funding: No additional direct funding

Budget History							
10/1/2018 (past)		FY 2019	(current)	FY 2020 – 9/31/2020 (planned)			
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share		
		\$443k	\$10k	\$443k	\$20k		

Project Plan and Schedule

Project Schedule												
Project Start: 10/1/2018 Completed Work												
Projected End: 9/31/2021		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned) use for missed					k					
		Milestone/Deliverable (Actual) use when met on time										
		FY2013 FY2014 FY2015										
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Q1: Market assessment												
Q2: Property measurments												
Q3: HX design specifications												
Q4: HX design showing 15% improvement												
Q1: Design the cast												
Q2: Complete CFD simulation												
Q3: Complete cast fabrication												
Q4: Evaluate the cast HX performance												
Q1: Documenting the manufacturing flaws												
Q2: Complete the fabrication of second HX												
Q3: Evaluate the thermal performance												
Q4: Cost analysis, commercialization activities, report												

Application	Annual Energy Consumption (2030)	Estimated Efficiency Gain	Potential Energy Savings [Quads]	
Residential AC/HP	2.413	10%	0.241	
Commercial AC/HP	1.030	10%	0.103	
Electric Water Heating	1.370	10%	0.137	
Gas-fired Water Heating	1.644	10%	0.164	
Gas-Fired Furnaces	3.559	10%	0.356	
Commercial Refrigeration (condensers only)	1.747	5%	0.087	
Residential Clothes Drying	0.660	10%	0.066	
	1.155			

Progress:

Al microchannel heat exchangers are currently made via expensive injection molding. Corrosion is an issue for them (because passages become clogged).

On April 13,2018, we demonstrated high-aspect-ratio features that are less than 10 microns thick cast directly from molten AI-Ce-X.