

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

A Natural Gas–Driven Highly Efficient Thermo-Vacuum Clothes Dryer

Oak Ridge National Laboratory Kashif Nawaz (Research Staff) 865-241-0792, nawazk@ornl.gov

Project Summary

<u>Timeline</u>:

Start date: 10-01-2018 Planned end date: 09-30-2021

Key Milestones

- 1. Develop a performance model for a thermo-vacuum-based clothes drying technology
- 2. Demonstrate the proposed concept by designing, fabricating, and operating a bench-scale thermo-vacuum clothes dryer
- 3. Develop a commercialization path by engaging appropriate OEMs and end-use operators

Budget:

Total Project \$ to Date:

- DOE: \$600K
- Cost Share: \$33K

Total Project \$:

- DOE: \$1,800K
- Cost Share: \$100K

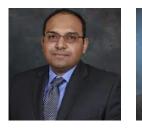
Key Partners (full spectrum of expertise):

Project Outcome:

- A revolutionary clothes drying technology leading to significant energy and water savings compared with the state-of-the-art drying concepts
- A relatively simple design with minimal moving parts and maintenance requirements
- The technology is to recover and re-use most of the water used on wet laundry
- A potential solution across industrial commercial and residential sectors

Project Team

Oak Ridge National Laboratory

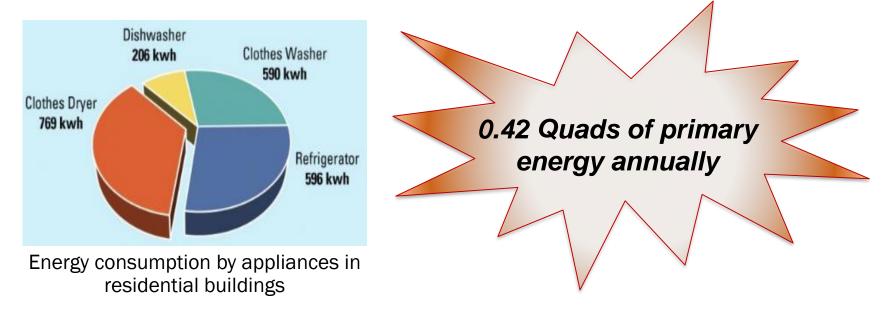

- Kashif Nawaz (R&D staff)
- Brian Fricke (R&D staff)
- Viral Patel (R&D staff)
- Matthew Sandlin (Postdoc associate)
- Ayyoub Momen (R&D staff)
- Kyle Gluesenkamp (R&D staff)
- Mingkan Zhang (R&D staff)
- Ahmad Abu-Heiba (R&D staff)

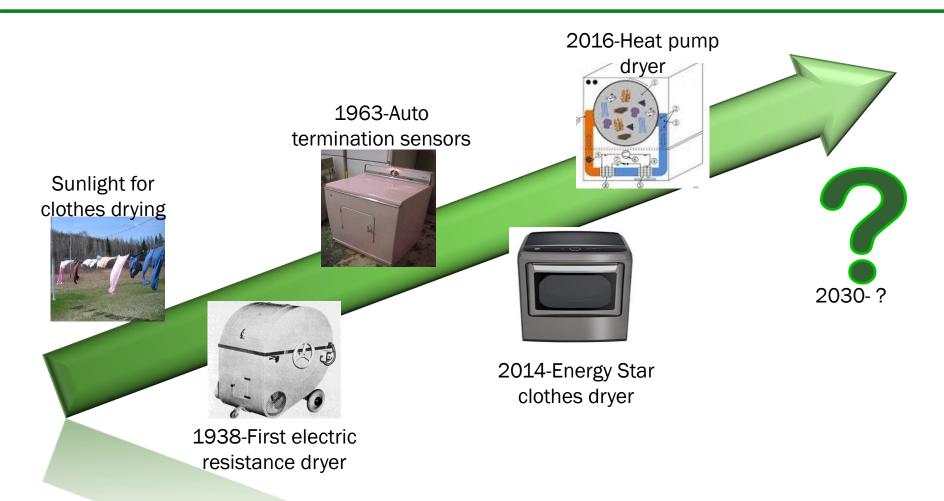
Gas Technology Institute

- Yaroslav Chudnovsky (Team lead)
- Shawn Scott (R&D staff)

Wilson Engineering Technologies

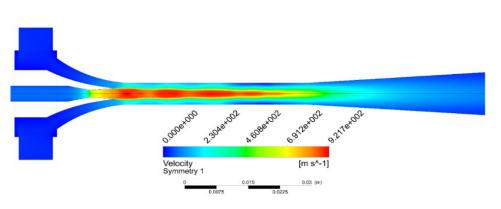
- Olexiy Buyadgie (Team lead)
- Dmytro Buyadgie (Director R&D)





Background

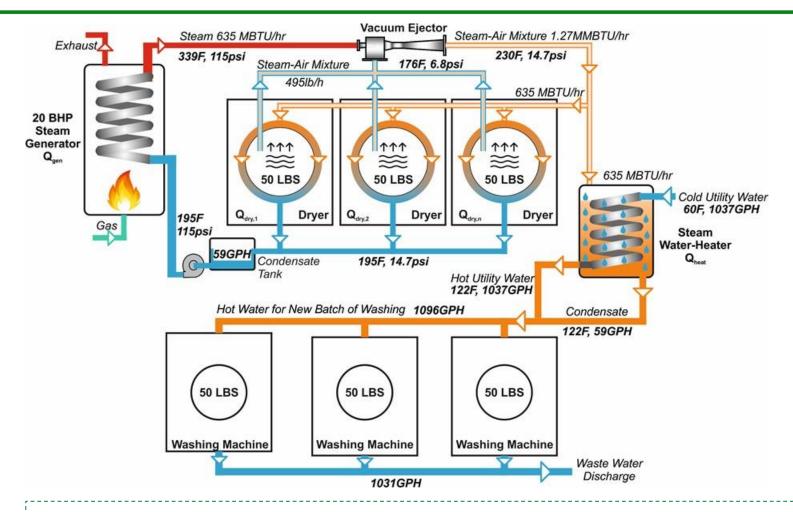
- Drying is <u>energy intensive process</u>, consuming on average 290,200 Btu of heat for each 1,000 lb of wet laundry
- Steam released into the atmosphere (0.30 lb per unit pound of wet laundry) intensifies the <u>greenhouse effect</u> and losses of <u>scarce water resources</u>
- The drying process at elevated temperatures (120°C–160°C) degrades fabric and increases energy loss to the environment


Background

An energy-efficient cost-effective process will transform the market Exceptional history in next-generation clothes dryers development

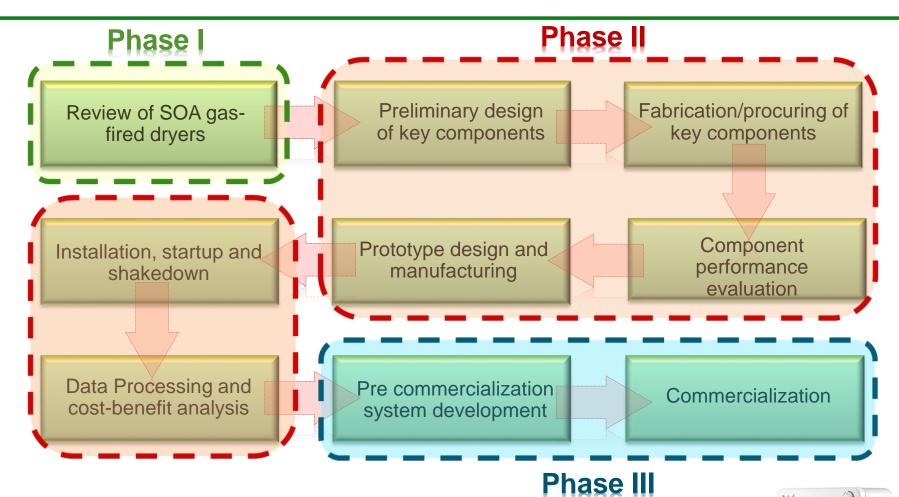
Solution Approach

- The innovative **thermo-vacuum drying** method
- 10 times faster moisture removal than any conventional methods
- Natural-gas driven approach
- Minimal electrical power requirements (drum rotation and controls)
- Waste heat and water recovery for re-use



Velocity profile of vacuum ejector

Ejector Nozzle


The steam ejector is the core of the technology that generates dynamic vacuum to intensify the drying process

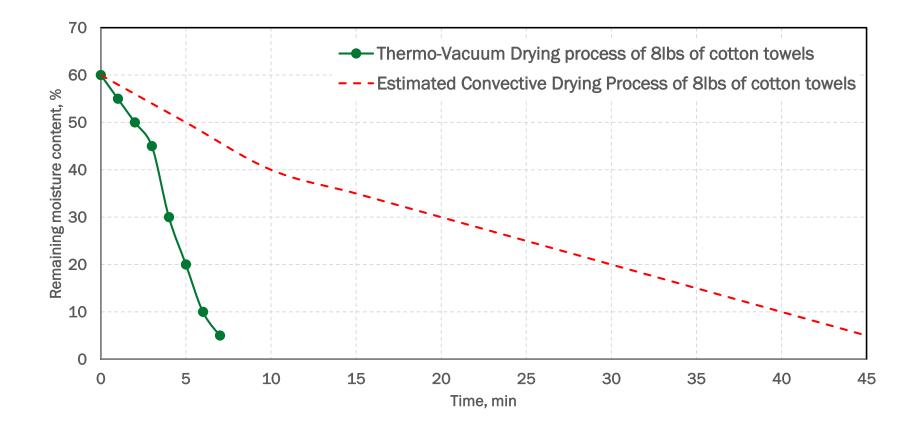
Solution Approach

- The process heat (635 MBtu/hr) is fully recovered and utilized
- 60-100 GPH of hot water is harvested and re-used for washing
- Drying rate is 150 lb per load with drying time of 8 min

Solution Approach

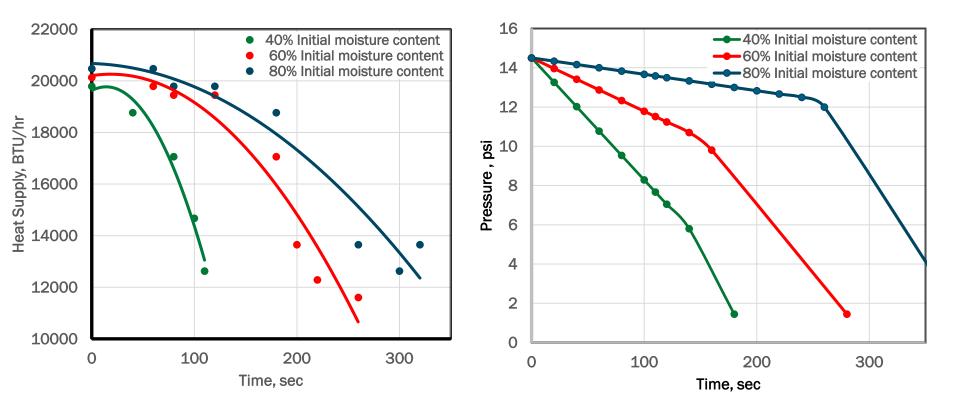
Phase II of the project will focus on two major sectors:

- 1. Commercial and industrial dryer
- 2. Residential dryer (multifamily and single family machines)


Project Impact

An improved clothes drying technology:

- Aligned with BTO goal to develop energy-efficient technology to effect 45% energy savings by 2030 compared with 2010 technologies
- Simplified design, improved reliability and durability
- 3-5 times longer life of laundry
- 1.5 times higher combined energy factor (CEF)
- Easy industrial and commercial retrofits
- At least 0.2 Quad/year energy savings
- Opportunities to create 1,000+ new jobs
- Implications for additional processes for power generation, waste heat recovery, energy and water harvesting

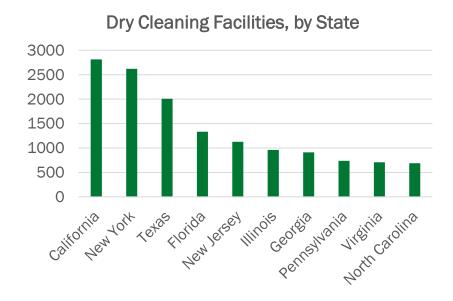

How would you feel if your laundry completely dried in 5-10 minutes without exposing to high temperature?

Proof of Concept

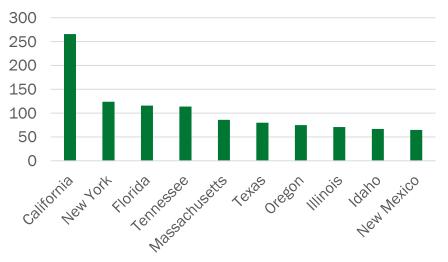
- Conventional drying (air convection) method requires higher drying time and energy input to heat the clothes, heat the air and power the air blower
- The drying rate depends on the moisture content in the clothes

Proof of Concept

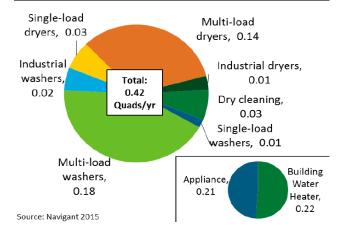
- Supplied heat is fully utilized for maintaining dynamic vacuum conditions inside the drum and clothes heating
- Heat consumption decreases as moisture content in the clothes decreases


Overview of Market Study

- Commercial and industrial laundries include a variety of facilities and services
- Each site may have from one up to dozens of dryer units
- Wide spectrum of the drying items of different moisture content


Facility Type	Typical Dryer Capacity, Ib	Estimated No of Facilities	Source
Multifamily housing	18-50	300,000 - 600,000	DOE/Navigant Consulting (2009)
Coin-operated	30-120	29,500	Coin Laundry Association (2019)
On-premise laundries*	50-170	60,000	DOE/Navigant Consulting (2009)
Dry cleaners	50-170	22,558	US Economic Census (2012)
Industrial operations	200+	2,364	US Economic Census (2012)
*includes hospitality, he	ealth care, correc	ctional facilities, live-in i	institutions, etc.

Overview of Market Study



Natural gas is estimated to account for 88% of energy consumption, largely to supply hot water for washing and hot air for drying. The remaining 12% of energy use is electric

Industrial Laundry Facilities, by State

By Appliance Type (Quads/yr.)

Overview of Market Study

- Expected service life will depend on the particular application but is estimated to be between 7–14 years, with a wide range expected.
- Energy breakdown of a typical dryer cycle is roughly 90% for air heating and 10% for motor operation

Stakeholder Engagement

- Development of the technology
 - Participation of commercial laundries
 - Industrial visits and collaboration meetings
 - Analysis of industrial energy data
- Collaboration with end-users
 - Site visits and preliminary data analysis
- Collaboration with OEM
 - Strong interest in efficiency improvement
- Meetings with experts at technical platform
 - ASHRAE (TC 1.3)
 - ASME (IMECE, SHTC)

gti

Engineering Technologies, Inc

Remaining Project Work

- Market assessment of clothes drying industry
- Preliminary design of components
- Fabrication and purchase of components
- Component level performance evaluation
- Prototype design and manufacturing
- Installation, startup and shakedown
- Performance data collection
- Cost benefit analysis
- Final reporting

Thank You!

Oak Ridge National Laboratory Kashif Nawaz (Research Staff) 865-241-0792, nawazk@ornl.gov

REFERENCE SLIDES

Project Budget

Project Budget: \$1.8M, \$100K cost share Variances: None Cost to Date: \$50K Additional Funding: None

Budget History								
FY 2018 (past)		FY 2019	(current)	FY 2020 (planned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
		\$600K	\$33K	\$600K	\$33K			

Project Plan and Schedule

Project Schedule												
Project Start: 10-01-2018				d Wo	Work							
Projected End: 09-30-2021		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned)										
		Milestone/Deliverable (Actual)										
		FY2019				FY2020			FY2021			
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Preliminary assessment of clothes drying												
market												
Preliminary deisgn of key components												
Fabrication and design of key components												
Component performacne evaluation												
Prototype design and manufacturing												
Installation and shakedown testing												
Performance data collection and reporting												
Cost benefit analysis												