

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Max Tech HPWH Field Study

munkjd@ornl.gov, Cheryn.Metzger@pnnl.gov

Project Summary

Timeline:

Start date: 10/1/2018

Planned end date: 9/30/2020

Key Milestones

- Results from duct configuration evaluation; 9/2019
- Final report on field/lab home evaluation; 9/2020

Budget:

Total Project \$ to Date:

• DOE: ORNL: 200k, PNNL: 158k

Total Project \$:

• DOE: ORNL: 400k, PNNL: 400k

Key Partners:

Project Outcome:

A market-ready, high-efficiency, low-GWP heat pump water heater with fieldvalidated performance and uniform energy factor (UEF) greater than 3.0.

Team

- Baseline and Max Tech HPWH evaluation in research house; FY19/20
- Evaluation of integration possibilities with ducting; FY19

Jeff Munk

Experience: 10 years of lab and field testing experience, 10+ studies on water heating equipment performance

Kashif Nawaz, PhD Experience: Design and optimization of heat pumps with alternative refrigerants

- Develop water draw profiles based on field test data; FY19
- Field test of Max Tech HPWH in occupied homes; FY20
- Baseline and Max Tech HPWH
 evaluation in lab homes; FY20

Cheryn Metzger, PE PMP LEED AP Experience: ~10 years of lab and field experience, with multiple projects related to heat pump water heaters

Walt Hunt, PE

Experience: ~10 years experience with lab and field experiments using heat pump equipment

Challenge

Problem Definition:

- Residential water heating accounts for 14% of electricity consumption in homes
- There is a trend for electrification of water heating and increased adoption of heat pump water heaters
- The automotive industry has already begun the phase out of R-134a refrigerant (typically used in heat pump water heaters) with refrigerants having lower global warming potential

EIA. 2015 Residential Energy Consumption Survey. U.S. Energy Information Agency. https://www.eia.gov/todayinenergy/detail.php?id=36412

EIA. Residential Energy Consumption Survey. U.S. Energy Information Agency. https://www.eia.gov/consumption/residential/index.php

- Emerging Technology project at ORNL to develop lower GWP high efficiency HPWH
 - Focus on maximizing uniform energy factor (UEF) and first hour rating (FHR)

- Residential Building Integration project with ORNL and PNNL
- Validate performance in real buildings and compare to existing R-134a HWPH
- Evaluate potential for demand-side load management
- Evaluate integration with building/equipment for mutual benefit

- Research house performance evaluation
 - Performance mapping; varying hot water use, set point, mode
 - Demand-side load flexibility; power use under various conditions, recovery rate, and tank losses
- Occupied home performance evaluation
 - Measured performance under real-world conditions
 - Feedback from homeowners on performance differences compared to prior HPWH
- Update hot water use profiles
- Ducting configurations in research house
 - Improve performance of HPWH
 - Pull air from warm/humid areas (bathroom with shower, attic)
 - Improve performance of other equipment
 - Deliver cool exhaust to the refrigerator to reduce condenser temperature and reduce heat gain through case

- Research house performance evaluation
 - Performance mapping; varying hot water use, set point, mode
 - Demand-side load flexibility; power use under various conditions, recovery rate, and tank losses
- Occupied home performance evaluation
 - Measured performance under real-world conditions
 - Feedback from homeowners on performance differences compared to prior HPWH
- Update hot water use profiles
- Ducting configurations in research house
 - Improve performance of HPWH
 - Pull air from warm/humid areas (bathroom with shower, attic)
 - Improve performance of other equipment
 - Deliver cool exhaust to the refrigerator to reduce condenser temperature and reduce heat gain through case

ORNL Approach – Research House

- 2-story, 2,400 ft² home built in 2013
- Located in Knoxville, Tennessee
- Mixed-humid climate
- Unoccupied, but with simulated occupancy using heaters, humidifiers, and programmable hot water use
- 2-stage heat pump
- 2-zones
- Slab foundation
- Vented attic
- R-13 walls
- R-38 attic

ORNL Approach – Research House

Water heater installed in garage; no insulation in exterior walls High temperature: ~85°F Low temperature: ~42°F

PNNL Approach — Lab Homes

• Represent existing homes

- 3 BR/2BA 1493-ft² double-wide, factory-built to HUD code
- All-electric with 13 SEER/7.7 HSPF heat pump central HVAC + alternate Cadet fan wall heaters throughout
- R-22 floors, R-11 walls & R-22 ceiling
- 195.7-ft² (13% of floor) window area
- Incandescent lighting
- Cold climate
- Electric vehicle charging station
- Some connected infrastructure
- Low-risk project data collection
- Equipment flexibility
- In this case, homes will be the same, except for windows

PNNL Approach — Lab Homes

- Research house performance evaluation
 - Performance mapping; varying hot water use, set point, mode
 - Demand-side load flexibility; power use under various conditions, recovery rate, and tank losses
- Occupied home performance evaluation
 - Measured performance under real-world conditions
 - Feedback from homeowners on performance differences compared to prior HPWH
- Update hot water use profiles
- Ducting configurations in research house
 - Improve performance of HPWH
 - Pull air from warm/humid areas (bathroom with shower, attic)
 - Improve performance of other equipment
 - Deliver cool exhaust to the refrigerator to reduce condenser temperature and reduce heat gain through case

PNNL Approach — Field Testing

- Leveraging previous field study
 - Existing AO Smith HPWHs
 - Previously collected baseline data
- Research Questions:
 - What is the customer experience with the Max Tech HPWH?
 - What is the field performance of the water heater?
 - How does the field performance compare to the lab performance?

- Research house performance evaluation
 - Performance mapping; varying hot water use, set point, mode
 - Demand-side load flexibility; power use under various conditions, recovery rate, and tank losses
- Occupied home performance evaluation
 - Measured performance under real-world conditions
 - Feedback from homeowners on performance differences compared to prior HPWH
- Update hot water use profiles
- Ducting configurations in research house
 - Improve performance of HPWH
 - Pull air from warm/humid areas (bathroom with shower, attic)
 - Improve performance of other equipment
 - Deliver cool exhaust to the refrigerator to reduce condenser temperature and reduce heat gain through case

PNNL Approach — Update Hot Water Use Profiles

Field Data Sources

CTA 2045 Dataset (200+ WHs)

- Instantaneous Power (W)
- Present Energy (Wh)

Field Monitoring Subset (60+ WHs)

- Instantaneous Power (W)
- Discharge Hot Water Temperature (°F)

- Research house performance evaluation
 - Performance mapping; varying hot water use, set point, mode
 - Demand-side load flexibility; power use under various conditions, recovery rate, and tank losses
- Occupied home performance evaluation
 - Measured performance under real-world conditions
 - Feedback from homeowners on performance differences compared to prior HPWH
- Update hot water use profiles
- Ducting configurations in research house
 - Improve performance of HPWH
 - Pull air from warm/humid areas (bathroom with shower, attic)
 - Improve performance of other equipment
 - Deliver cool exhaust to the refrigerator to reduce condenser temperature and reduce heat gain through case

ORNL Approach – Duct Configuration

- Heat pump water heater performance is dependent on the entering air temperature and humidity
- When the evaporator temperature is below the dew point of the air, condensation occurs
 - Increases heat transfer/capacity
 - Increases efficiency
- Bathroom with a shower is a good source for warm humid air
 - Added benefit that a shower will typically cause the heat pump water heater to turn on, resulting in automatic ventilation
- Unconditioned attic is another source for warm air
 - Only a benefit after sun has heated attic
- Cool exhaust air can be used to improve refrigerator efficiency

Impact

- Higher efficiency = Energy savings
 - Targeting an efficiency over 3x greater than that of standard electric water heaters
 - Electricity use for residential water heating is estimated to use 1.3 quads of primary energy = <u>energy savings potential of 0.87 quads</u>
- Lower GWP refrigerant = Reduced global warming impact of refrigerants
 - R-134a GWP = 1430
 - Max Tech HPWH will use refrigerant with GWP between 3 and 7
- Existing low GWP HPWH uses CO2 and is a two-box system with a cost of ~\$4,000
- Max Tech HPWH will be designed based on existing single-box HPWH platform with minimal cost increase over conventional HPWHs

Progress — Development of Model

B. Shen, K. Nawaz, A. Elatar, V. Baxter, "Development and Validation of Quasi-Steady-State Heat Pump Water Heater Model Having Stratified Water Tank and Wrapped-Tank Condenser" International Journal of Refrigeration, 2018, 87,78-90.

Progress — Parametric Analysis

- 46-gallon water tank
- Heat pump T-stat at the top: on at 115° F, off at 125° F.
- Electric element at the top: on at 110° F, off at 125° F.
- Two different evaporator sizes and evaporator flow rate
- Two different heat loss factors from tank
- Two different condenser coil wrap patterns
- Two different condenser tube sizes

Condenser wrap configurations (a) counter flow (b) parallel-counter flow

Case number	Wrap pattern	Evaporator size*	Tank insulation effectiveness (%)	Condenser tube size (inches)			
1	Parallel-counter	1 Evap	90	0.31			
2	Parallel-counter	1 Evap	90	0.50			
3	Parallel-counter	2 Evap	90	0.31			
4	Parallel-counter	2 Evap	90	0.50			
5	Parallel-counter	1 Evap	95	0.31			
6	Parallel-counter	1 Evap	95	0.50			
7	Parallel-counter	2 Evap	95	0.31			
8	Parallel-counter	2 Evap	95	0.50			
9	Counter	1 Evap	90	0.31			
10	Counter	1 Evap	90	0.50			
11	Counter	2 Evap	90	0.31			
12	Counter	2 Evap	90	0.50			
13	Counter	1 Evap	95	0.31			
14	Counter	1 Evap	95	0.50			
15 PARTMENT OF EN	Counter	2 Evap ERGY EFFICIENCY & R	95 ENEWABLE ENERGY	0.31			

Progress — Parametric Analysis

- First hour rating (FHR) for all various cases is comparable- Medium pattern
- R1234ze (E) has reduced FHR due to lower volumetric capacity
- Uniform energy factor (UEF) is more sensitive to tank effectiveness and condenser tube size

Parameter	R134a	R1234yf	R290
Optimum refrigerant charge	2.3	2.2	1.05
First Hour Rating (FHR)	66	68	67
Uniform Energy Factor	3.44	3.40	3.60

 Low ambient testing is a challenging but required for further technological developments.

ORNL Progress

EARLY STAGE PROGRESS

- Baseline HPWH installed in garage and instrumented
- RTDs for cold water inlet, hot water outlet, and mixed temperature
- Flow meters on cold water line to water heater and mixed flow line
- Thermocouples for HPWH intake and exhaust air, compressor suction and discharge, liquid line, evaporator, refrigerator intake and exhaust air, refrigerator ambient
- Power meters on water heater and refrigerator
- Temperature/RH combination sensors for garage ambient, HPWH intake air, and bathroom ambient
- Evaluate performance when varying:
 - Mode: Efficiency, Hybrid, Electric
 - Set point temperature: 120 $^{\circ}\,$ F, 130 $^{\circ}\,$ F, 140 $^{\circ}\,$ F
 - Hot water use: Low, Medium, High

ORNL Progress

• Real-time monitoring webpage displays current data and historical data to quickly identify any issues and determine general trends in data

PNNL Progress

<u>Magnitude of Hot Water Draw</u>

Option A: CTA 2045 Present Energy Data

- Resolution of Data varies with Manufacturer. Limited Accuracy
- Unique Data Characteristics for Each WH Type
- Filter out Stand-by Losses and Noise from Dataset

Option B: Power Demand Data

- Electric Resistance WHs provide simpler path to Determining Magnitude

Stakeholder Engagement

- Direct involvement from HPWH manufacturer
- Feedback from homeowner test sites on noise, air temperature surrounding unit, and hot water quality
- Present project progress at next ACEEE Hot Water Forum and seek feedback from industry

Remaining Project Work

Remaining Project Work

- Finalize design of Max Tech HPWH
- Build Max Tech HPWH prototypes
- Identify up to three field test sites
- Install and instrument Max Tech HPWHs at field test sites
- Install and instrument Max Tech HPWHs at research homes
- Comparative testing of performance and demand-side load flexibility

Thank You

ORNL and PNNL Jeffrey Munk/Cheryn Metzger munkjd@ornl.gov/Cheryn.Metzger@pnnl.gov

REFERENCE SLIDES

Project Budget

Project Budget: 400k – ORNL, 400k PNNL Variances: None Cost to Date: 38k ORNL, 30k PNNL Additional Funding: None

Budget History								
FY 2018 (past)		FY 2019	(current)	FY 2020 – 9/30/2020 (planned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
0	0	358k	0	442k	0			

Project Plan and Schedule

Describe the project plan including:

- Start date 10/1/2018; End date 9/30/2020;
- Milestones:
 - 6/30/2019 Develop hot water draw profiles from field data
 - 9/30/2019 Slides on duct configuration study results
 - 9/30/2020 Final report on field and lab home study

Project Schedule												
Project Start: 10/1/2018		Completed Work										
Projected End: 9/30/2020		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned) use for missed										
		Milestone/Deliverable (Actual) use when met on time										
		FY2019 FY20			(2020		FY2021					
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Current/Future Work												
Evaluate ducting configurations												
Develop hot water draw profiles												
Final report on field study												