

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Low-cost Composite Phase Change Material

Oak Ridge National Laboratory Kyle Gluesenkamp, PhD gluesenkampk@ornl.gov

Project Summary

Timeline:

Start date: 10/1/2018 Planned end date: 9/30/2021

Key Milestones

- 1. Evaluation of as-received material Acquire exfoliated graphite, conduct standard characterization, and infuse with salt hydrate and densify; 02/28/2019
- 3 salt hydrate/CENG composites characterized -- Using commercially available graphite, three different salt hydrates composites are synthesized and evaluated; 03/31/2019

Budget:

Total Project \$ to Date:

- DOE: \$850k
- Cost Share: \$0

Total Project \$:

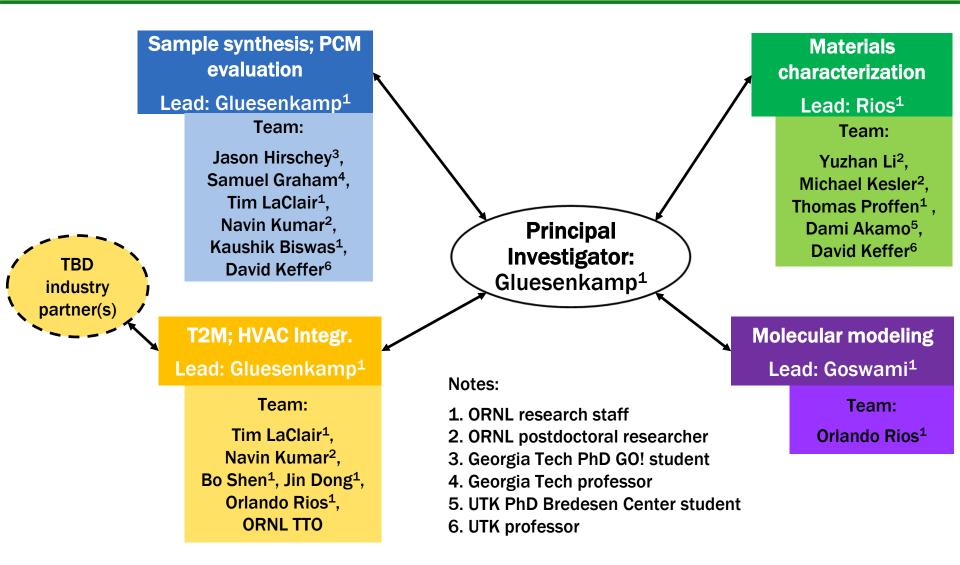
- DOE: \$2550k
- Cost Share: \$0

Key Partners:

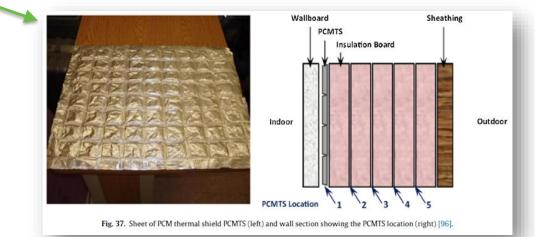
ORNL – Building Technologies Integration Center (BTRIC)

ORNL – Center for Nanophase Materials Science (CNMS)

Georgia Institute of Technology


University of Tennessee, Knoxville

Project Outcome:


When successful, this project will advance the state of the art by realizing a 10x reduction in the cost of deploying phase change materials (PCMs) for building equipment or envelopes.

Multidisciplinary Project Team

Challenge: Cost Effectiveness

- Traditional PCM solutions:
 - Passive
 - Integrated into wall/floor



- Problems:
 - Temperature mismatch: highly sensitive
 - High cost: payback exceeds product life
 - Poor fire safety: organic paraffin-based
 - Intrusiveness; inaccessibility: integrated into walls
 - Low utilization: only useful part of year, hurting economics
 - Low demand impact: PCM depleted by afternoon peak

Souayfane et al. (2016). "PCMs for cooling applications in buildings: a review." Energy and Buildings v. 129, 396-431

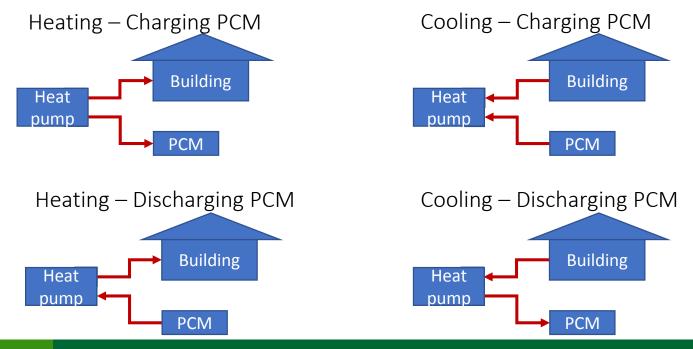
Bland, et al. (2017). "PCMs for Residential Building Applications." Buildings, v. 7, 78.

Challenge: Cost

Challenge: Technical Issues with Salt Hydrates

- Incongruent melting
 - Water/salt separation with repeated thermal cycling
 - Reduces thermal storage capacity over time
- Large supercooling
 - Unpredictable crystallization, delayed nucleation
 - Large temperature and volumetric fluctuations
- Low thermal conductivity
 - Slow thermal charging/discharging
- Corrosion
 - Liquid phase corrodes packaging
 - Shorten system lifespan
 - Alter chemical composition and thermophysical properties

Approach


Potential to transform energy storage:

- Billions of dollars have been invested into R&D of electric battery technologies, including
 - As of 2015, nearly \$2B from renewable energy
 - As of 2015, nearly \$2B from automotive industries
 - From 2017 to 2030, Bloomberg New Energy Finance (2017) predicts that global investments in electrical energy storage will double 6 *times*, with
 - \$103B invested over this time period
 - \$26B in the US
- By contrast, thermal energy storage has seen very little investment
- When this project is successful, a low cost PCM based on ORNL-developed IP can deliver energy storage services more cost effectively than electric batteries

Approach

HVAC integration

- HVAC-coupled PCM storage allows a range of possible phase change temperatures to be used.
 - Increases annual utilization factor to improve economics
- Configurations have been modeled and evaluated in ORNL's Heat Pump Design Model (HPDM) software

Approach

Develop a stable, low-cost salt hydrate, using a **Building model to explore** novel technique for incorporating compressed applications expanded natural graphite (CENG). **Stakeholder interviews** synthesis; PCM Demonstrate prototype with >200 W thermal Measured Guide targets evaluation power, >800 Wh storage performance **Extended sample Rapid sample evaluation** characterization evaluation Equipment: DSC, T-H **Equipment:** custom calorimetry parallel cycling equipment Sample Select synthesis Discarded samples techniques Static (ex operando) XRD, In operando X-ray, **SEM, total scattering PDF** Neutron **Structure-Performance Processing-Structure** relationship correlation in a device Adjust sample

> Molecular modeling on HPC

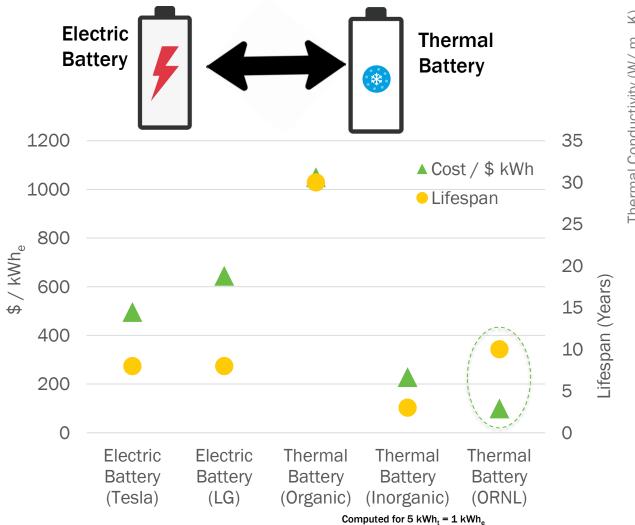
PDF scattering data

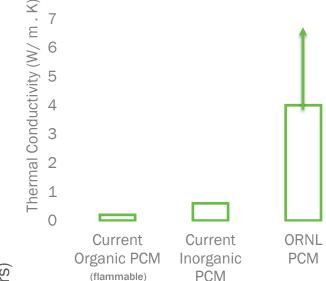
Legend:

Sample

Materials

Molecular

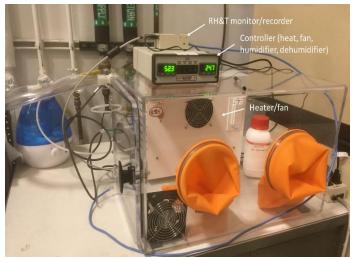

modeling


T2M

synthesis

Impact

• When this project is successful, a low cost PCM based on ORNL-developed IP can deliver electric-equivalent storage more cost effectively than electric batteries

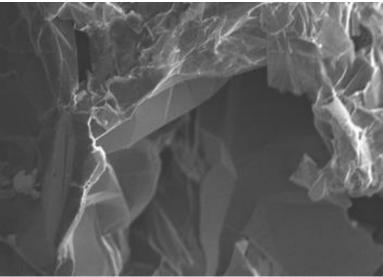

Project outcomes:

8

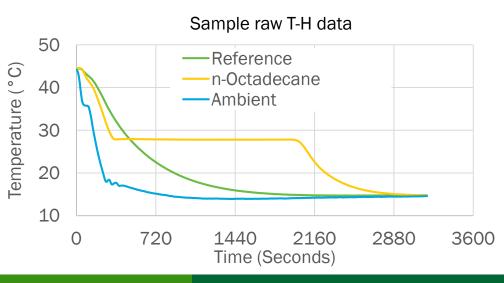
- Demonstrate the stability
 >100 cycles and cost of PCM
 < \$2/ kWh
- Demonstrate prototype with
 >200 W thermal power, >800
 Wh storage

Sample synthesis

- Composite samples have been created
- Patent was filed on composition of matter and technique for creating it
- Sample handling procedure developed for XRD, SEM, and PDF evaluations


Humidity controlled glovebox for sample transfers

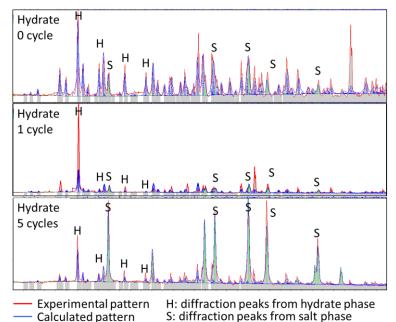
Compressed graphite-salt "puck" before sealing with water vapor impermeable film.


Graphite-salt composite packed in bag

SEM image of composite sample

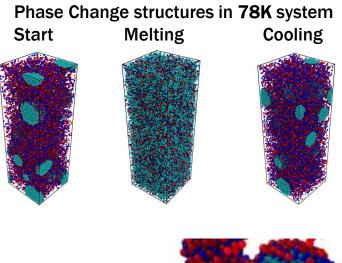
Temperature-history calorimetry

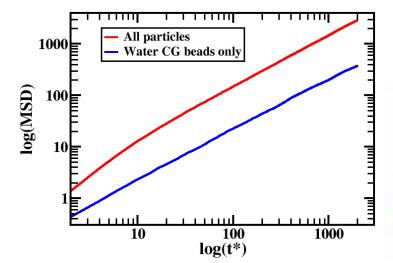
- Accelerated thermal cycling with in-situ temperature, latent heat, heat capacity measurement for PCMs.
- Accuracy \pm 3–6% of latent heat.
- Large sample throughput
 - Simultaneous evaluation of up to 150 samples
 - 24/7 operation
- Temperature range: -20°C to 60°C

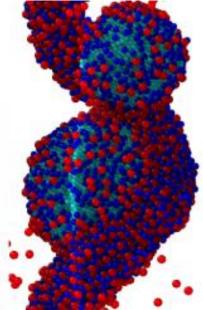


$$H_{fs} = \frac{m_w C p_W + m_{tw} C p_{tw}}{m_p} \frac{A_1}{A'_1} (T_0 - T_m)$$

XRD Characterization


- Rietveld method for quantitative phase analysis
- Thermal degradation with cycling
- New PCM degradation evaluation technique
- Outlines the degradation mechanism
 - By-product of degradation
 - Quantifies the rate of degradation




Sample	Pure hydrate		Composite 1		Composite 2		Compos	site 3	Composite 4		
	Hydrate	salt	Hydrate	salt	Hydrate	salt	Hydrate	salt	Hydrate	salt	
Cycle-0	94.2	5.8	88.4	11.6	97.9	2.1	91.9	8.1	48.3	51.7	
Cycle-1	86.7	13.3	59.8	40.2	92.4	7.6	1.3	98.7	7.6	92.4	
Cycle-5	23.0	77.0	49.7	50.3	78.5	21.5	0	100	0.8	99.2	

MD Simulation

- Coarse–grain simulation of $Na_2SO_4 + H_2O$
- Understand the basic mechanism of phaseseparation in the PCM
- Excellent phase separation under gravity and viscosity
 - Two phase separation: Hydrous and anhydrous
- 78K system vs. 28K System
 - Smaller system shows
 - Viscosity-dependent phase reversibility
- Ostwald ripening
 - Water motion is separate from all particles

Stakeholder Engagement: early stage project

• Multi-institution team

- Outreach to potential industry partners
 - Discussions held with **5 thermal storage companies**
 - Coordination established with **2 graphite suppliers**
 - Discussions ongoing with 3 HVAC OEMs

Stakeholder Engagement (continued)

• Inventions

- Jason R. Hirschey, Yuzhan Li, Tim Laclair, Anne Mallow, Kyle R. Gluesenkamp, Orlando Rios, Monojoy Goswami, and Samuel Graham (2019). Composite thermal batteries: robust low-cost composite phase change energy storage with high transient power. Oak Ridge National Laboratory Invention Disclosure 201804349. Provisional patent filed March, 2019.
- Gluesenkamp, K.R., Tim LaClair, Jeffrey Munk, Jin Dong (2018). Thermal storage system for residential space conditioning. ORNL Invention Disclosure 201804095, DOE S-138,762.

Reports and Publications

- Manuscript submitted: "Review of Stability and Thermal Conductivity Enhancements for Salt Hydrates"
- Monojoy Goswami, "Beyond petascale—HPC and polymeric materials design", presented to American Physical Society March Meeting, Boston, MA, March 3-8, 2019.
- Jin Dong, Bo Shen, Jeffrey Munk, Kyle R. Gluesenkamp, Tim Laclair, and Teja Kuruganti (accepted). "Novel PCM Integration with Electrical Heat Pump for Demand Response," *IEEE Power & Energy Society General Meeting 2019*, Atlanta GA, August 4-8, 2019 (Accepted).
- Three abstracts submitted to European Congress and Exhibition on Advanced materials and Processes (EUROMAT 2019).

Remaining Project Work

- Evaluate and publish different PCM characterization techniques, including:
 - Large scale parallel T-H calorimetry
 - XRD-based degradation
- Develop CENG-PCM and characterize on micro-level
- Perform technoeconomic analysis for applications
- Develop and characterize system prototype at the macro level

Thank You

Oak Ridge National Laboratory Kyle R. Gluesenkamp, PhD gluesenkampk@ornl.gov

REFERENCE SLIDES

Project Budget

Project Budget: \$850k/yr, FY19-21 Variances: None Cost to Date: \$297k Additional Funding: None

Budget History										
FY 2018 (past)		FY 2019	(current)	FY 2020 – FY 2021 (planned)						
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share					
0	0	\$850k	0	\$1700k	0					

Project Plan and Schedule

Project Schedule												
Project Start: October 2018		Completed Work										
Projected End: September 2021		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned)										
		Milestone/Deliverable (Actual)										
		FY2019			FY2020			FY2021				
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Q2 Milestone 1: Characterization CENG-PCM												
Q2 Milestone 2: Three different CENG -PCM characterized and cycle and Review Paper of Salt Hydrate			•									
Current/Future Work												
Q4 Milestone 3: Preliminary technoeconomic analysis					\diamond							
Q4 Milestone 4: Publish standard characterization					\diamond							
Q4 Milestone 4: One Composite Evaluation (Go/No-Go)					\diamond							
Q2 Milestone 5: Evaluation of milled + passivated material							\diamond					
Q3 Milestone 6: Refine technoeconomic analysis								\diamond				
Q4 Milestone 7: New material exploration									¢			
Q4 Milestone 8: 50 W HX prototype fabraciated									\diamond			
Q4 Milestone 4: One Composite Evaluation (Go/No-Go)									\diamond			
Q1 Milestone 9: MD Simulations reported										\diamond		
Q3 Milestone 10: Cycling and latent heat evaluation												\diamond
Q4 Milestone 11: Project Wrap Up												
Q4 Milestone 12: Scaled Up Prototype Evaluation												