U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Evaluation of Safe Refrigerant Charge Limits for Flammable Refrigerants

Oak Ridge National Laboratory Van Baxter, Distinguished R&D Engineer vdb@ornl.gov – 865-574-2104

Timeline:

Start date: 06/01/2016

Planned end date: 09/30/2017 orig; 9/30/2019 actual

AHRI/ASHRAE/CA/DOE collaboration, initiated 2016

Key Milestones

- 1. Workshop with key stakeholders: 10/31/2016
- 2. Computational Fluid Dynamics (CFD) simulation campaign: 06/30/2017 orig; 4/30/2018 actual
- 3. Develop reduced order model (ROM) for charge limit estimation; 9/30/2017 orig; 9/30/2018 actual
- 4. Submit a draft for the final report; 09/30/2017 orig; 2/28/2018 (Part 1) and 11/30/2018 (Part 2) actuals

Budget:

Total Project \$ to Date:

- DOE: \$1M
- Cost Share: \$0

Total Project \$:

- DOE: \$1M
- Cost Share: \$0

Project Outcome:

- Develop analytical tools for relatively quick estimation of safe flammable refrigerant charge limits.
- Enable wider use of environmentally friendly refrigerants with potential for 90+% reduction of direct, refrigerant-related global warming impact.

Key Partners:	
Air Conditioning,	American Society of
Heating, and	Heating,
Refrigeration	Refrigerating, and Air
Technology Institute	Conditioning
(AHRTI)	Engineers

Team

Within DOE, ORNL is the center of excellence in commercial and residential building equipment R&D along with supporting analysis tool development

Team members for this project include:

- Dr. Dean Edwards, Dr. Charles Finney, Dr. Miroslav Stoyanov—CFD modeling/simulation, ROM development
- Dr. Ahmad Abu-Heiba—Stakeholder workshop coordination, literature review, ROM development
- **Dr. Viral Patel**—Stakeholder workshop coordination, literature review, reports coordination
- Dr. Ahmed Elatar and Dr. Mingkan Zhang—CFD modeling/simulation
- Dr. Omar Abdelaziz and Van Baxter— Project managers/principal investigators, overall project direction, reports coordination

Challenge

Problem Definition:

- Pressure mounting to reduce use of high global warming potential (GWP) refrigerants
 - Kigali amendment to Montréal Protocol limits developed nations (e.g., Non Article 5) use of high GWP refrigerants (e.g., R-410A) to 15% of base levels by 2036
 - Nearly all lower GWP alternatives to R-410A flammable to some extent (A2L, A2, or A3)
- Safety standards limit charge for HVAC&R systems using *any* flammable refrigerant

Kigali amendment negotiated in October 2016 and entered into force January 1, 2019

Key Need:

- Science-based analytical tools to enable the heating, ventilation, air-conditioning, and refrigeration (HVAC&R) industry to relatively quickly estimate safe charge limits for flammable refrigerants in HVAC&R applications
 - Enable adjustment to limits to facilitate wider use of flammable, lower GWP alternatives
- Goals of this early-stage supporting project:
 - Solicit industry stakeholder input to review/guide research approach and plans
 - Develop CFD model of refrigerant release into occupied space and run simulations over range of relevant parameters
 - Based on CFD results, develop ROMs for charge limit estimation

Source: http://multimedia.3m.com/mws/media/1365924O/unep-fact-sheet-kigali-amendment-to-mp.pdf.

Approach

- Industry engagement throughout project
 - Initial workshop to solicit input on needs and R&D approach
 - Added CFD validation element to project
 - Regular review meetings with AHRTI advisory group
 - Expanded scope to provide input for most recent ASHRAE 15.2 update
- Literature review (academic, codes, and standards) to determine key technology gaps and missing information
- Conduct CFD simulations using validated model of refrigerant release events for range of parameters
- Development of ROM(s) for relatively quick safe charge limit estimation

Impact

Impact of Project:

- National energy market for HVAC&R equipment using high GWP refrigerants amounts to ~7 Quad/year in 2030
 - ~2.4 Quad/year for residential space heating and AC alone (~\$30B/year @ 2018 avg elec price)
- Success in achieving goals would provide the industry with tools to estimate appropriate flammable refrigerant charge limits
 - Enable wider use of efficient and environmentally friendly refrigerants with potential 90%+ reduction of direct refrigerant-related greenhouse gas (GHG) emissions
 - System evaluations by AHRI and DOE show potential for 10%+ improvement in energy efficiency with system optimization (~0.24 Q/year energy savings if these alternatives replace all R-410A and other legacy refrigerant-based residential heat pump and AC systems)
- Produce publications informing national and international standards and codes developers
- ✓ Directly supports BTO Emerging Technologies 2016-20 MYPP
 - ✓ Goal—enable 45% reduction in building energy use intensity (EUI) in 2030 vs. 2010 EUI
 - ✓ HVAC/WH/Appliances Strategy 1: Near-Term Technology Improvement

Progress — Workshop

- Held in October 2016 at ASHRAE HQ in Atlanta, Georgia
- 40 stakeholders
 - HVAC&R, appliances, refrigerant manufacturers
 - Standards and codes development organizations
 - Industry and professional organizations
 - DOE, US Environmental Protection Agency (EPA), ORNL
- Direct impact on project direction
 - Added CFD simulation validation testing effort, a crucial addition as will be seen later
 - Focus CFD studies on several key parameters
 - Refrigerant charge, release rates, release location (height), ventilation rates, door openings, room size

Progress — Literature Review

Literature ~evenly split between experimental and analytical studies

~80% dealt with residential-type split AC/HP systems

Some key R&D gaps identified

- Basing safety criteria on maximum refrigerant concentration in room can be misleading.
- What refrigerant leak rate assumption best typifies real refrigerant release events?

Progress — Literature Review

Why maximum concentration point as basis for safety can be misleading

- Maximum concentration as ratio of lower flammability limit (LFL) is plotted against total mass leaked as ratio of maximum charge mass per IEC-60335-2-40 (2016 version)
- Exceeding max charge limit did not necessarily result in maximum concentration in room exceeding LFL <u>at measurement points</u>
- Also, staying under max limit did not necessarily prevent refrigerant concentration from exceeding LFL <u>at measurement points</u>

Data from experimental studies—maximum concentrations at specific points monitored

Key point: <u>Concentration is location dependent</u> (will always be a flammable refrigerant/air mixture near leak release point)

Progress — Initial CFD Simulations/Validation

efrigerant Concentration

Near floor

6 ft above floor

Accurate modeling of leak release is crucial

- Initial simulations assumed leak release profile across 1 ft² area
 very low momentum waterfall pattern with most refrigerant pooling near floor
- Test observations show refrigerant entering room as a relatively high velocity plume---more mixing throughout
- Initial CFD results vs. data not good match

point1 point2

point3 point4 point5

pointe

Near floor

200

300 Time (s)

Volume Fraction (%)

Dh = 0.305 m t = 31 s

0.60 - 0.59

xCH2F2

0.45 0.30 0.15

0.00

CFD model calibration to data; 1" hydraulic diameter (Dh) release orifice most closely replicated observed release profile

~6 ft above floor

Progress — Initial CFD Simulations/Validation

NOTE: R-32 LFL = 14.4% per ASHRAE 34-2016

- R-32 release tests performed by Jensen-Hughes, Inc. under subcontract
- Test vs. simulation results for 1 in. (25 mm) hydraulic diameter leak release orifice
 - Dashed lines → measured refrigerant concentration at six sample points (SP)
 - Solid lines → predicted concentration from CFD simulation at same locations
- Simulations results fall within measurement uncertainty bands (+/- 4.5%)
- Room profile used for initial simulations and validation

Progress — Multi-room Simulations

- Requested by ASHRAE 15.2 committee and AHRTI Project Monitoring Sub-committee (PMS)
- Simulation of leak from 3-ton package AC unit into an 1,800 ft² (167 m²), 4-room residence
 - 7 lb. (~3.2 kg) total refrigerant charge
- Ductwork and rooms simulated separately
 - Duct solution (flow rate and composition) imposed as boundary condition on room model
- Symmetry imposed to reduce computational demands by modeling only half the domain

Case	Refrigerant	Rooms open	Vent location	Fan status	Leak duration [s]	
1	R-32	4	Floor	Off	240	
2	R-32	4	Ceiling	Off	240	
3	R-32	4	Floor	Off	17.8	
4	R-452B	4	Floor	Off	240	
5	R-32	0	Floor	Off	240	
6	R-452B	0	Floor	Off	240	
7	R-32	0	Floor	Off	17.8	
8	R-32	0	Floor	On	17.8	
9	R-32	2	Floor	Off	17.8	

Floor duct geometry, AC unit in crawlspace

Ceiling duct geometry, AC unit in attic

Progress — Multi-room, Key Results

t = 200 s

0.75 0.50 0.25 0.00

Floor ducts, fan off, 4 min release (case 3):

- >99% of refrigerant (R-32) stays in ducts
 - Flammable concentrations in branch ducts (concentration between LFL and UFL*)
 - Concentration >UFL in main duct

Floor ducts, fan on, 18s release (case 8):

- Refrigerant forced out of duct quickly
- Max concentrations during release:
 - ~25% in duct —
 - <6% in rooms near duct outlets</p>
- Refrigerant dispersed quickly (<1% everywhere after ~60s)
- Ceiling ducts, fan off, 4 min release (case 2):
 - Gravity forces refrigerant into rooms
 - Maximum concentrations
 - ~15% in duct during leak, near leak point
 - ~3.5% in rooms under duct outlets

*NOTE: R-32 LFL = 14.4% per ASHRAE 34-2016; upper flammability limit (UFL) 28-33% (various sources)

Progress — ROM Development

Sparse-grid approach with TASMANIAN* to reduce number of CFD cases to be run over parameter ranges Factorial approach: ~12,000 CFD case matrix Sparse-grid approach: ~500 CFD case matrix

- Some cases took months of calendar time to complete
- TASMANIAN "curve-fits" the matrix to an n-dimensional, continuously differentiable mathematical function (aka, the ROM)
- Two ROMs
 - Unit fan off (complete): expect higher max refrigerant concentrations
 - Unit fan on: expect more even dispersion of refrigerant in space

ROM outputs:

- Refrigerant concentration: Min, max, and room mean at 5, 10, 20, 50, 100, 200, 300, 400, 500, 600 s
- Flammable volume (% of total room volume) for LFL/UFL combinations of fifteen different flammable refrigerants
- Fraction of total room volume with >LFL concentration (aka fuel volume), for multiple LFLs

TASMANIAN: Toolkit for <u>A</u>daptive <u>S</u>tochastic <u>Modeling And Non-Intrusive ApproximatioN</u> Developed at ORNL with funding from the DOE Office of Science

Parameter inputs	Range considered				
Unit fan	Off / On				
Room floor area*	5 – 20 m ²				
Leak height	0 – 2.438 m				
Open door area	0.01 - 1.96 m ²				
Ventilation rate	0 – 576 cfm				
Leak rate	1.875 - 34.2 kg/min				
Total charge	0.1 - 11.275 kg				
MW of refrigerant	44 - 144 kg/kmole				

Simulation symmetry plane in pale green

Stakeholder Engagement

- Project near completion, 95+% complete
- Two primary stakeholder engagement efforts:
 - Early workshop helped focus project approach including key advice regarding CFD simulation tool validation
 - Regular meetings with AHRTI PMS
- Project summaries presented
 - ASHRAE 15.2 committee meeting, January 2018
 - AHRTI Flammable Refrigerants Research and Planning Conference, October 2018
- Key takeaway: maintaining room air circulation via AC fan or room vent fan is very effective for reducing maximum refrigerant concentrations in release event

Primary publications:

- Methodology for Estimating Safe Charge Limits of Flammable Refrigerants in HVAC&R Applications–Part 1, ORNL/TM-2018/804, June 2018 (release date)
- Methodology for Estimating Safe Charge Limits of Flammable Refrigerants in HVAC&R Applications–Part 2, ROM Development, ORNL/TM-2018/1066, March 2019 (release date)

Remaining Project Work

Finalize and document unit "fan on" ROM version; goal to distribute report in FY 2019

Thank You

Oak Ridge National Laboratory Van D. Baxter, Distinguished R&D Engineer 865/574-2104; vdb@ornl.gov

REFERENCE SLIDES

Project Budget

Project Budget: Started the project in July 2016; \$950k budget from FY16 and FY17 AOP.

Variances: two additional but important tasks added based on stakeholder feedback & requests; CFD simulations took longer than anticipated for some scenarios essential to ROM development; project completion delay largely due to impact of these variances

Cost to Date: 100% of project budget expended (finishing on donated time). **Additional Funding**: none anticipated.

Budget History									
	-6-2018 ast)		:019 rent)	FY 2020 (planned)					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
\$974k	\$0	\$26k	\$0	\$0	\$0				

Project Plan and Schedule

- Project initiation date July 2016; planned completion date September 2019
- Key milestones indicated below
- See previous slide for explanation of schedule deviations

Project Schedule												
Project Start: July 2016		Completed Work										
Projected End: September 2019	Active Task (in progress work)											
		Milestone/Deliverable (Originally Planned)										
		Milestone/Deliverable (Actual)										
		FY2	2017			FY2	2018			FY2	2019	
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work											İ.	
Initial Stakeholder workshop (October 2016)												
Finalize CFD simulation campaigns for ROM dev.							•					
Complete CFD simulations & dev. "fan off" ROM												
Complete draft Part 1 report (Initial CFD & val.)												
Complete draft Part 2 report ("fan off" ROM)												
Current/Future Work												
Complete CFD simulations & dev. "fan on" ROM												
Complete draft Part 3 report ("fan on" ROM)												

Design of Experiment; cases for initial CFD simulations and calibration tests

Test #	R-32 charge [kg]	Leak time [min]	Leak rate [g/s]	Leak orifice size* [m ²]	Presence of obstacles	Leak location (x, y, z) [all in m]		Leak volumetric flow rate [SLPM]
1	3.257	4	13.572	0.093	None	(0, 1.83, 1.8)	Baseline case	378.214
2	4.886	4	20.358	0.093	None	(0, 1.83, 1.8)	1.5 x higher charge	567.322
3	6.515	4	27.144	0.093	None	(0, 1.83, 1.8)	2.0 x higher charge	756.429
4	3.257	1	54.289	0.093	None	(0, 1.83, 1.8)	1 min fast release	1512.858
5	3.257	10	5.429	0.093	None	(0, 1.83, 1.8)	10 min slow release	151.286
6	2.172	4	9.048	0.093	None	(0, 1.83, 1.2)	Different leak height	252.143
7	1.842	4	7.675	0.093	None	(0, 1.83, 0.6)	Different leak height	213.878
8	3.257	4	13.572	0.093	None	(0, 1.83, 1.8)	Liquid leak	378.214
9	3.257	4	13.572	0.093	Boxes	(0, 1.83, 1.8)	10% occupied	378.214
10	3.257	4	13.572	0.093	Boxes	(0, 1.83, 1.8)	25% occupied	378.214
11	6.515	4	27.144	0.093	None	(0, 1.83, 1.8)	Constant ventilation	756.429
12	6.515	4	27.144	0.093	None	(0, 1.83, 1.8)	Start ventilation at 10% LFL	756.429

Initial Simulations & Calibration Testing

- Simulations and testing based on identical room foot print area and volume
 - Parameters as listed on previous slide
- · Simulation assumed relatively large release area
 - Yields waterfall like refrigerant flow into room with pooling at floor level & high concentration gradient (right, middle \rightarrow)
 - Leak release set up for tests intended to match assumed flow pattern (right, bottom \rightarrow)
- Simulation results did not match test results very well
 - More details in Part 1 report: <u>https://www.osti.gov/biblio/1460212</u>

Leak release set up for calibration tests; intended to mimic release through coil and grill of room AC

Initial sim. results, Case 1, baseline Max conc. ~14% at floor

Test results, Case 1, baseline Max conc. ~8% at floor & 6 ft. level just after leak ends