Active Insulation Systems

Scenario 2
(Reduce Energy Use)
In-out coupling

Scenario 3
(Reduce Peak Loads)
Precondition

Scenario 4a
(Reduce Energy Use)
Double control

Oak Ridge National Laboratory
Florian Antretter
+1 865 241 9151, antrettfer@ornl.gov
Project Summary

Timeline:
Start date: October 1, 2018
Planned end date: September 30, 2019

Key Milestones:
1. Determined simulation procedure, December 31
2. Summarized simulation results, June 30
3. Developed schematic designs for two active insulation systems (AISs), September 30

Key Partners:
The project is an initial scoping study.
After confirmation that active insulation achieves significant energy savings, potential partners for the highest impact solutions will be identified in a targeted manner.

Budget:
Total Project $ to Date:
- DOE: $240K
- Cost share: $0K

Total Project $:
- DOE: $350K
- Cost share: $0K

Project Outcome:
Simulation results will indicate whether AISs are a technology that should be pursued to make building envelopes dynamic based on:
- Potential energy savings
- Potential reductions in peak demand
Challenge

• Current opaque envelopes are static systems in dynamic environments that cannot do the following:
 – Use beneficial outdoor conditions
 – Use dynamic controls
 – Control and optimize heat storage
 • Preconditioning
 • Integrate renewable sources

• Building envelope storage capacity is being underused
 – Single family wood-frame building storage capacity ~11 kWh/K
 (Diurnal use ~30 kWh, Mass Walls ~25 kWh/K, Powerwall II: 13.5 kWh)
 – Single family water heater storage capacity ~0.22 kWh/K

• AISs
 – Can they save energy and provide grid services?
AIS: Material/system that changes thermal conductivity based on external control

Approach and Team

Review
- State-of-the-art review
 - Select tool
 - Select setup

Screening simulations
- Screening study
 - Select high-impact cases

In-depth
- Iterative refinement
- Optimization study
 - Select design-phase cases

Design
- Schematic designs
 - 12/19

- Philip Boudreaux, PhD
 - Envelope Systems, Modeling

- Som Shrestha, PhD
 - EnergyPlus Modeling

- Florian Antretter
 - Dynamic Building Performance

- Borui Cui, PhD
 - Optimization Algorithms

- Diana Hun, PhD
 - Envelope Systems New Materials

- Mikael Salonvaara
 - Grid Impact

- 12/18
- 03/19
- 06/19
Systems and Technologies

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Description</th>
<th>Reference</th>
<th>Conductivity</th>
<th>Speed of change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Gas Pressure</td>
<td>Variable conductance insulation</td>
<td>Benson (1994)</td>
<td>0.025</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td>Hydrogen adsorption/desorption</td>
<td>Horn (2003)</td>
<td>0.003</td>
<td>0.140</td>
</tr>
<tr>
<td></td>
<td>Variable pressure aerogel blanket</td>
<td>Berge (2015)</td>
<td>0.011</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>Variable pressure fumed silica VIP</td>
<td>Berge (2015)</td>
<td>0.007</td>
<td>0.019</td>
</tr>
<tr>
<td>Convection (liquid)</td>
<td>Fluid tanks with different conductivity</td>
<td>Al-Nimr (2009)</td>
<td>0.018</td>
<td>0.640</td>
</tr>
<tr>
<td></td>
<td>Permeodynamic wall (breathing wall)</td>
<td>Imbabi (2006)</td>
<td>0.002</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>Parietodynamic wall (dynamic void space)</td>
<td>Imbabi (2012)</td>
<td>0.036</td>
<td>0.130</td>
</tr>
<tr>
<td>Convection (air)</td>
<td>Translucent element with insulation panel between two air gaps</td>
<td>Pflug (2015, 2012)</td>
<td>0.046</td>
<td>0.170</td>
</tr>
<tr>
<td></td>
<td>Porous wall with cross airflow</td>
<td>Ascione (2015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forced airflow through insulation layer</td>
<td>Elsarrag (2006, 2009, 2012)</td>
<td>0.014</td>
<td>0.090</td>
</tr>
<tr>
<td>Multi-layer</td>
<td>Collapsing number of air layers</td>
<td>Kimber (2014)</td>
<td>0.026</td>
<td>0.800</td>
</tr>
<tr>
<td></td>
<td>Transparent exterior with movable multilayers</td>
<td>Pflug (2017)</td>
<td>0.013</td>
<td>0.262</td>
</tr>
<tr>
<td>Thermodiode</td>
<td>Direction of nanotube</td>
<td>Wu (2014)</td>
<td>0.400</td>
<td>1.200</td>
</tr>
<tr>
<td></td>
<td>Bidirectional thermodiode</td>
<td>Varga (2002)</td>
<td>0.061</td>
<td>0.360</td>
</tr>
</tbody>
</table>

Most promising technologies provide **controllable thermal conductivity in a broad range with fast switching**
Modeling and Control

<table>
<thead>
<tr>
<th>Tool</th>
<th>Approach</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESP-r</td>
<td>Source code modifications</td>
<td>Loonen et al. (2014)</td>
</tr>
<tr>
<td>TRNSYS</td>
<td>No detailed description about implementation</td>
<td>Pflug et al. (2015)</td>
</tr>
<tr>
<td>TES</td>
<td>Air channels to short circuit insulation</td>
<td>Elsarrag et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>• “Surface Control: Movable Insulation”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Energy Management System</td>
<td></td>
</tr>
</tbody>
</table>

Loonen et al. (2014):

“Despite the **limitations in existing software tools**, researchers and engineers have developed numerous customized simulation strategies for predicting the performance of responsive building elements in whole-building performance simulation programs... So far, most of these attempts have used **workarounds, which tend to rely on approximations or simplifications.**”
Research Gaps

- **Proposed technologies**
 - Only tested at lab level or with bench-scale prototypes
 - Most have high energy demand to change thermal conductivity
 - Focus on exterior walls
 - Do not address building integration

- **Control strategies are very simple or too complex**

- **No coupling with dedicated heat charging/discharging system**
 - Hydronic system
 - Direct electric heat

- **No reproducible and easy-to-implement simulation methods**
Application Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Envelope assembly</th>
<th>Assembly and monitors</th>
<th>Control Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AIS$_{ext}$ + low thermal mass</td>
<td></td>
<td>Control: Difference in surface temperature Lightweight indoor-outdoor coupling</td>
</tr>
<tr>
<td>2</td>
<td>AIS$_{ext}$ + high thermal mass</td>
<td></td>
<td>Control: Difference in surface temperature Mass indoor-outdoor coupling</td>
</tr>
<tr>
<td>3</td>
<td>Exterior static insulation + high thermal mass + AIS$_{int}$</td>
<td></td>
<td>Control: Difference in surface to zone temperature, time of day Pre-conditioning with HVAC (Peak Reduction)</td>
</tr>
<tr>
<td>4</td>
<td>AIS${ext}$ + high thermal mass + AIS${int}$</td>
<td></td>
<td>Control: Difference surfaces to thermal mass temperature, difference surface to zone (a) free energy, (b) additional pre-conditioning</td>
</tr>
<tr>
<td>5</td>
<td>AIS${ext}$ + high thermal mass + dedicated heating/cooling + AIS${int}$</td>
<td></td>
<td>Control: Difference surfaces to thermal mass temperature, time of day energy price Total control over charging and discharging time with highest localized comfort control</td>
</tr>
</tbody>
</table>

- Energy Price
- Exterior surface
- Thermal mass
- Interior surface
- Zone operative temperatures
- Active Insulation
- Static Insulation
- No Insulation
- Cladding
- Drywall
- Low Mass
- High Mass
Modeling in Energy Plus

DOE Prototype Buildings:
- Residential
- Medium office
- Stand-alone retail

Actuators: Building components with active insulation

Sensors: Triggering parameters:
- Temperatures
 - Surfaces
 - Mass
 - Operative
- Surface heat fluxes
- Energy price

Energy Plus Energy Management System
Control: User-defined, rule-based control algorithm

Temperature Difference in-out [°C]
Simulation Study Outline

Screening Simulation Matrix

<table>
<thead>
<tr>
<th></th>
<th>Base light</th>
<th>Base mass</th>
<th>Scen 1</th>
<th>Scen 2</th>
<th>Scen 3</th>
<th>Scen 4a</th>
<th>Scen 4b</th>
<th>Scen 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>CZ 1</td>
<td>CZ 2</td>
<td>CZ 3</td>
<td>CZ 4</td>
<td>CZ 5</td>
<td>CZ 6</td>
<td>CZ 7</td>
<td>CZ 8</td>
</tr>
<tr>
<td>Medium Office</td>
<td>CZ 1</td>
<td>CZ 2</td>
<td>CZ 3</td>
<td>CZ 4</td>
<td>CZ 5</td>
<td>CZ 6</td>
<td>CZ 7</td>
<td>CZ 8</td>
</tr>
<tr>
<td>Stand-alone Retail</td>
<td>CZ 1</td>
<td>CZ 2</td>
<td>CZ 3</td>
<td>CZ 4</td>
<td>CZ 5</td>
<td>CZ 6</td>
<td>CZ 7</td>
<td>CZ 8</td>
</tr>
</tbody>
</table>

Matrix with
- 48 Baseline variants
- 144 Scenario variants

Iterative Refinement

Identify options with potential based on
- Energy demand
- Peak load

Improve iteratively

Identify ~4 ideal combinations

Optimization Simulation

\[
f = \min \sum_{t=0}^{t=24} Energy_{cooling+heating}
\]

\[
f = \min \left(\sum_{t=start}^{t=end} PeakLoad_{cooling} + \sum_{t=start}^{t=end} PeakLoad_{heating} \right)
\]

Apply evolutionary algorithm in conjunction with multi-objective optimization functions
Example Results: Residential Summer

Temperature of mass fluctuates around set point

- Precondition and discharge of mass
- Natural cooling
- Natural cooling + controlled discharge

Los Angeles Residential Prototype
South Wall - August 4

- Wall as naturally driven cooling element (Scenario 2, 4a)
- Coast through peak hours (Scenario 3)
Impact - Energy Savings

Scenario 2
(Reduce Energy Use)
In-out coupling

Scenario 3
(Reduce Peak Loads)
Precondition

Scenario 4a
(Reduce Energy Use)
Double control

Total change in kBtu
Grid Challenge: Afternoon Ramp

- Shift cooling demand away from “ramp” using active loading
- Lower consumer cost due to Time Of Use price

Building contribution to address grid challenges: Increase efficiency and shed/shift load

Residential Prototype Building
Los Angeles
Stakeholder Engagement

• Presentation at the ASHRAE 2019 Buildings XIV International Conference
• Ongoing discussions with other national labs on ongoing simulation efforts on thermal storage

FY20 and Beyond (DOE funds approved only for FY19):
Based on impact and requirements:
• Involve industry to develop materials and systems
• Involve industry to include controllable building envelopes in building energy management systems
• Discussions with utilities on load shedding, shifting, and modulation requirements
Remaining Work and Outlook

Remaining FY19 Work:

• Simulation Study
 – Complete screening simulations
 – Pick and optimize high-potential options
 – Optimize control with evolutionary algorithms

• AISs schematic designs that integrate simulation results

Building envelope systems with AIS can significantly
• reduce energy for heating and cooling (up to 70% from free energy sources in first iteration of screening study)
• provide grid services (shed, shift, and even modulate loads) in all climate zones to make the building envelope an efficient active component
Thank You

Oak Ridge National Laboratory
Florian Antretter
antretterf@ornl.gov
+1 865 241 9151
REFERENCE SLIDES
Project Budget

Project Budget: $350K
Cost to Date: ~$136K

<table>
<thead>
<tr>
<th></th>
<th>FY 2018</th>
<th>FY 2019 (current)</th>
<th>FY 2020 – FY 2021 (planned)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Cost-share</td>
<td>$130K</td>
<td>$220K</td>
<td>TBD</td>
</tr>
<tr>
<td>Cost-share</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

TBD: To Be Determined
Project Plan and Schedule

<table>
<thead>
<tr>
<th>Task 1: Assessment of the State-of-the-Art</th>
<th>10/18</th>
<th>11/18</th>
<th>12/18</th>
<th>01/19</th>
<th>02/19</th>
<th>03/19</th>
<th>04/19</th>
<th>05/19</th>
<th>06/19</th>
<th>07/19</th>
<th>08/19</th>
<th>09/19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature review</td>
<td></td>
</tr>
<tr>
<td>Technologies and systems</td>
<td></td>
</tr>
<tr>
<td>Simulation methods, tools, controls</td>
<td></td>
</tr>
<tr>
<td>Optimization control</td>
<td></td>
</tr>
<tr>
<td>Identification of research gaps</td>
<td></td>
</tr>
<tr>
<td>Establish simulation procedure</td>
<td></td>
</tr>
<tr>
<td>Simulation tool</td>
<td></td>
</tr>
<tr>
<td>Building models</td>
<td></td>
</tr>
<tr>
<td>System modeling</td>
<td></td>
</tr>
<tr>
<td>Application scenarios</td>
<td></td>
</tr>
<tr>
<td>Scoping study set-up</td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td></td>
</tr>
</tbody>
</table>

Task 2: Feasibility Analysis												
General preparation												
Simulation model set-up												
Logic implementation for control												
Full-scale parametric study												
Set-up full-scale parametric simulations												
Run and assess full-scale parametric simulations												
Identify options with potential												
In-dept simulation study												
Iterative control improvement												
Summarize full-scale and in-depth parametric simulation study												
Identify ideal scenarios												

Task 3: Initial Development of Active Insulation Systems												
Combine information												
Identify conductivity range, applications												
Identify large scale manufacturing requirements												
Identify cost effectiveness												
Schematic designs												
Describe schematic designs												

- **Task 1: Assessment of the State-of-the-Art**
 - Literature review
 - Technologies and systems
 - Simulation methods, tools, controls
 - Optimization control
 - Identification of research gaps
 - Establish simulation procedure
 - Simulation tool
 - Building models
 - System modeling
 - Application scenarios
 - Scoping study set-up
 - Report

- **Task 2: Feasibility Analysis**
 - General preparation
 - Simulation model set-up
 - Logic implementation for control
 - Full-scale parametric study
 - Set-up full-scale parametric simulations
 - Run and assess full-scale parametric simulations
 - Identify options with potential
 - In-dept simulation study
 - Iterative control improvement
 - Summarize full-scale and in-depth parametric simulation study
 - Identify ideal scenarios

- **Task 3: Initial Development of Active Insulation Systems**
 - Combine information
 - Identify conductivity range, applications
 - Identify large scale manufacturing requirements
 - Identify cost effectiveness
 - Schematic designs
 - Describe schematic designs
Deliverables and Milestones

<table>
<thead>
<tr>
<th>Deliverables/Milestones</th>
<th>Due date</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submitted a summary of the literature to guide the research</td>
<td>12/31/18</td>
<td>Regular</td>
</tr>
<tr>
<td>Established a simulation procedure for a 6-month scoping study</td>
<td>12/31/18</td>
<td>Regular</td>
</tr>
<tr>
<td>Integrated logic, thermal, and optimization control models for selected residential and/or commercial prototype buildings into simulation environment</td>
<td>3/30/19</td>
<td>Regular</td>
</tr>
<tr>
<td>Identified example implementation scenarios for active insulation systems</td>
<td>6/30/19</td>
<td>Regular</td>
</tr>
<tr>
<td>Completed summary of simulation results on potential energy savings estimates and benefits to the grid. Decide on: Energy consumption and peak loads can be decreased by at least 20%</td>
<td>6/30/19</td>
<td>Go/No Go</td>
</tr>
<tr>
<td>Submitted schematic designs for two AISs based on info gathered in Tasks 1 and 2</td>
<td>9/30/19</td>
<td>Regular</td>
</tr>
</tbody>
</table>