

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Validation Study of Experimental Insulating and Air-Sealing Technology for Enclosed Roof Cavities

Building Envelope Materials Douglas Lamm, CEO dlamm@bematerials.com

Project Summary

Timeline:

Start date: 10/1/2017 Planned end date: 12/31/2019

Key Milestones

- 1. Lab Demonstration Completed; 9/30/2018
- 2. 2 Pilot Projects Completed; 11/15/2018

Budget:

Total Project \$ to Date:

- DOE: \$342,226
- Cost Share: \$127,159

Total Project \$:

- DOE: \$600,362
- Cost Share: \$228,931

Key Partners:

Mass Clean Energy Center

CertainTeed/Saint Gobain

Mass Technology Assessment Committee

Action For Boston Community Development

Project Outcome:

Goal:

To develop a minimally invasive retrofit insulation process for enclosed roof cavities. The process will stop air leaks and double the insulation value of the ERC.

Outcomes:

- Process for un-insulated and under-insulated cavities developed and demonstrated in budget period 1
- 2. Optimization of processes to be completed in budget period 2

Team

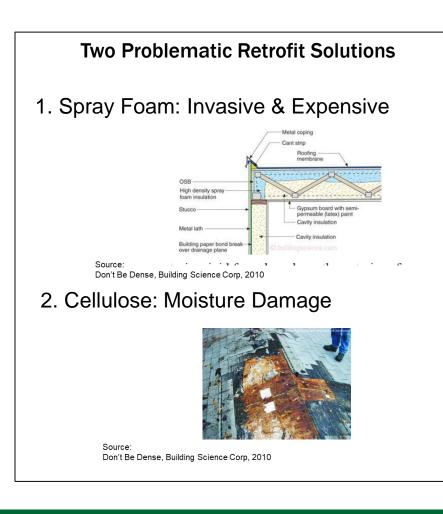
	Name	Contribution
	Doug Lamm	Principal Investigator. Program management, experiments & pilots
	Alex Bell	Dispenser equipment development Experimental design & pilots
	Tom Pittsley	Test stand construction & pilots
	CertainTeed/Saint Gobain	Materials development Commercialization
MASSACHUSETTS CLEAN ENERGY CENTER	MassCEC	Matching funds Pilot project identification
mass save	MassSave/Mass Tech Assessment Committee	Approval for MA weatherization programs
abcod	Action for Boston Community Development	First commercial deployments

Challenge:

Improving Performance of Roofs In Existing Homes

Enclosed Roof Cavities (ERCs) Are Common: Est. 80% Of Homes Have Dormer Roofs, Flat Roofs and/or Cathedral Ceilings

Problems Caused By Under-insulated Roof Cavities


1. Ice dams lead to roof leaks

Source:

2. Heat loss from air leakage

Approach

The Market Problem:

• How to retrofit enclosed roof cavities without tearing down the ceiling

What We're Doing:

- Injecting closed cell polyurethane insulating foam into ceiling surfaces through a tiny hole
- Using narrow diameter tubes to place the foam where needed in the cavity
- Developing a novel procedure for injecting the appropriate amount of material
- Developing novel dispense equipment to communicate to the injection technician and to validate foam quality
- Using an infrared camera to validate fill quality

Critical Questions:

- Does the material overheat at 11.5" thickness?
- How to dispense without voids at wide rafter spacing (e.g. 24" on center)?
- How to dispense without voids at various roof angles or in flat roofs?
- How to minimize the number of holes in the cavity?
- How to dispense in fiberglass filled versus empty cavities?
- How to avoid having material drip through soffit vents?

Approach: We're Modifying A Previously Developed System For Injecting Foam Into Wall Cavities

Step 1: Site-Prep

Find studs, measure, mark, drill

Insert tube or needle

Step 2: In Wall Metering

Inject known volume

Use IR camera to determine fill rate

Step 3: Injection

Inject predetermined volume

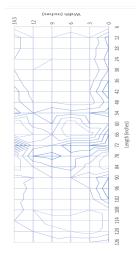
Repeat 1 to 3 times/cavity

Validate with IR

Approach:

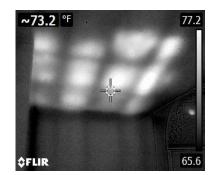
We developed systems in the lab and then tested in pilot projects

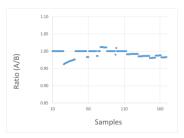
1. Build ERC test stands


2. Build "Talking Dispenser"

3 Test Injection Processes

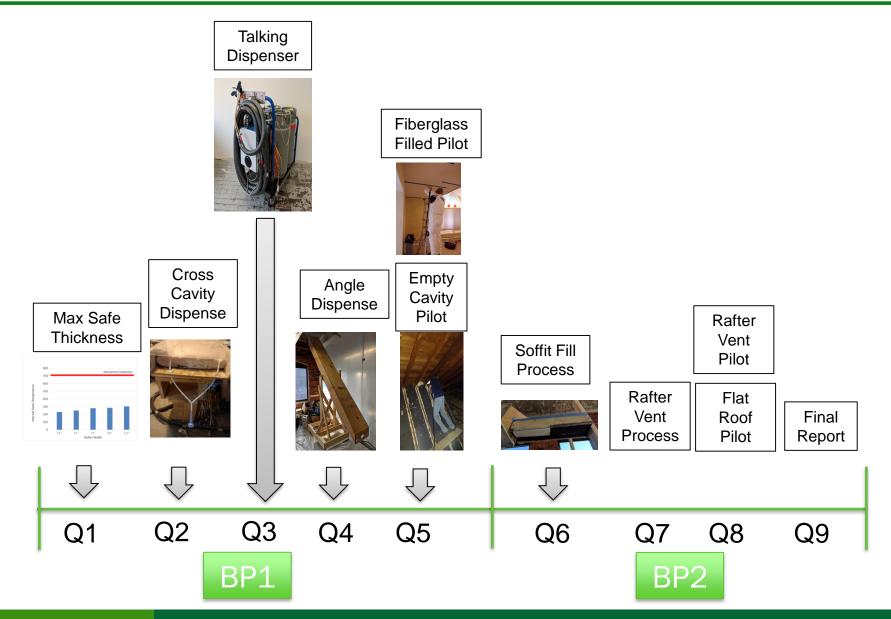
4. Measure results


5. Inject Empty ERC Pilot

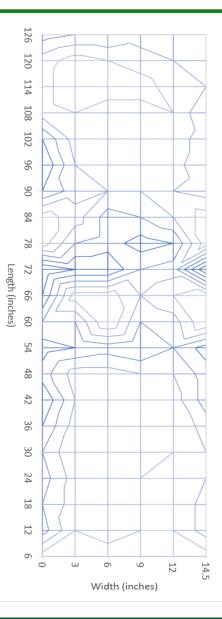

6. Inject Fiberglass Filled ERC Pilot

7. Validate Fill With IR Camera

8. Validate Foam Quality With Dispenser Data


Impact

When fully deployed, we could insulate flat roofs in any triple decker from "Boston to Baltimore"


Feature	Advantage	Benefit				
Closed cell polyurethane foam	Foam = R7/inch Cellulose/FG = R3.5/inch	Greater energy savings				
	Foam = semi-impermeable Cellulose/FG = permeable	No roof rot				
	Foam = air barrier Cellulose/FG = air permeable	Reduced heat loss				
Injection	Injection = $\frac{1}{2}$ " hole per 8 feet Spray/Cellulose = tear off ceiling	Minimize ceiling repair time and cost				
In wall metering	Calculates injection volume	Avoid blowout risk & voids				
IR camera	View inside cavity	Validate fill quality				
Talking dispenser	Real time ratio monitoring	Validate foam quality				

Progress

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Measurement	BP 1 Target	BP 1 Achieved						
Average foam thickness	2"	3.9"						
R value of injected foam	13	30						
Perm rating	<1	<1						
Significant delaminations	None	None						
Observable gaps in air barrier	None	None. Min thickness = 2.5"						
Observable gaps in air barrier	None	Consistent thickness. Stdev = 0.7"						

Stakeholder Engagement

BEM Contractor Council

Boston Housing Authority

MA Dept Housing & Community Development

- Developing low GWP materials
- Providing sales channel and marketing support
- Providing funding to scale up talking dispenser
- Providing initial deployment reimbursement to building owners
- Approving the technology for residential and commercial reimbursement
- Providing funding for affordable housing projects
- Providing guidance on process and equipment design from contractor perspective
- Providing pilot projects and guidance on benefits from building owner perspective
- Providing pilot projects and guidance on benefits from building owner perspective

Remaining Project Work

More Consistent Fill Around Rafter Vent

~70.3 °F 69.2 58.8

Prevent foam spillage into soffit without need for soffit liner

Punctured Rafter Vent

Paper liner

Thank You

Building Envelope Materials Douglas Lamm, CEO dlamm@bematerials.com

REFERENCE SLIDES

Project Budget: \$829,293 Variances: No variances from project budget Cost to Date: 66% of project budget has been expended Additional Funding: Approximately \$100,000 additional funding secured through the MassCEC.

Budget History									
10/1/2017 – FY 2018 (past)		FY 2019	(current)	FY 2020 (planned)					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
\$342,226	\$127,159	\$64,000	\$16,000	\$0	\$0				

Project Plan and Schedule

Project Schedule				-									
Project Start: 10/1/2017		Completed Work											
Projected End: 12/31/2018		Active Task (in progress work)											
		Milestone/Deliverable (Originally Planned)											
		Milestone/Deliverable (Actual)											
	FY2017				FY2018			FY2019					
Task	Q1 (Jan-Mar)	Q2 (Apr-Jun)	Q3 (Jul-Sep)	Q4 (Oct-Dec)	Q1 (Jan-Mar)	Q2 (Apr-Jun)	Q3 (Jul-Sep)	Q4 (Oct-Dec)	Q1 (Jan-Mar)	Q2 (Apr-Jun)	Q3 (Jul-Sep)	Q4 (Oct-Dec)	
Past Work													
Q4 Milestone: Max Safe Temperature													
Q1 Milestone: Cross Cavity Dispense													
Q2 Milestone: Angle Dispense													
Q3 Milestone: Talking Dispenser													
Q4 Milestone: Pilot Projects													
Q1 Milestone: Soffit Fill Process													
Current/Future Work													
Q2 Milestone: Rafter Vent Process													
Q3 Milestone: Pilot Projects													
Q4 Milestone: Final Report													