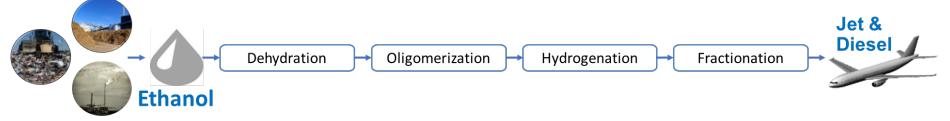
DOE Bioenergy Technologies Office (BETO) 2019 Project Peer Review

Low Carbon Hydrocarbon Fuels From Industrial Off Gas

March 4-8, 2019 Technology Session Area Review

Dr. Laurel Harmon LanzaTech, Inc.



This presentation does not contain any proprietary, confidential, or otherwise restricted information

Goal Statement

Project Goal:

To accelerate commercialization of a new flexible pathway to hydrocarbon fuels by designing, building, and operating a facility to produce jet and diesel from ethanol intermediates

Key Project Outcomes:

- Demonstrate production of low-cost jet and diesel with >70% GHG reduction
- > 1000 hours of operational data to validate technology and inform next stage of scale up
- Deliver first commercially-relevant quantities of jet and diesel from ethanol, with validated business model, cost model, and distributed supply chain model

Key Phase 1 Outcomes:

- Implementation site selected, with required permits and NEPA approval
- FEL-3 (-5/+15%) ISBL and OSBL cost estimates
- Implementation plan with supply, offtake, and financing agreements

Relevance to Bioenergy Industry/Impact:

- Establishes route to jet from diverse feedstocks, including biomass residues, industrial gases, and MSW, which reduces GHG emissions and displaces petroleum-derived jet.
- Enables rapid expansion of domestic alternative jet supply to meet CORSIA obligations

Carbon Smart™

LanzaTech

Quad Chart Overview

Timeline

- Start: January 15, 2017
- End: March 30, 2019
- 70% complete

Budget (Fiscal Years)

	FY 17 Costs	FY 18 Costs	Total Planned Funding (FY 19- Project End Date
DOE Funded	242,785	1,210,470	2,190,853
Project Cost Share (LanzaTech)	268,028	1,336,326	-45,679
Project Cost Share (Partners)	0	0	2,464,325

Barriers

- Barriers addressed
 - Ot-C. Risk of Financing Large-Scale Biorefineries
 - Ct-F. Increasing the Yield from Catalytic Processes
 - ADO-A. Process Integration
 - ADO-D. Technology Uncertainty of Integration and Scaling

Partners

Partners*

- o LanzaTech (40%)
- EPC (35%)
- Universities (5%)
- o Industry Partners (20%)

*Percentage involvement per original budget

1 - Project Overview

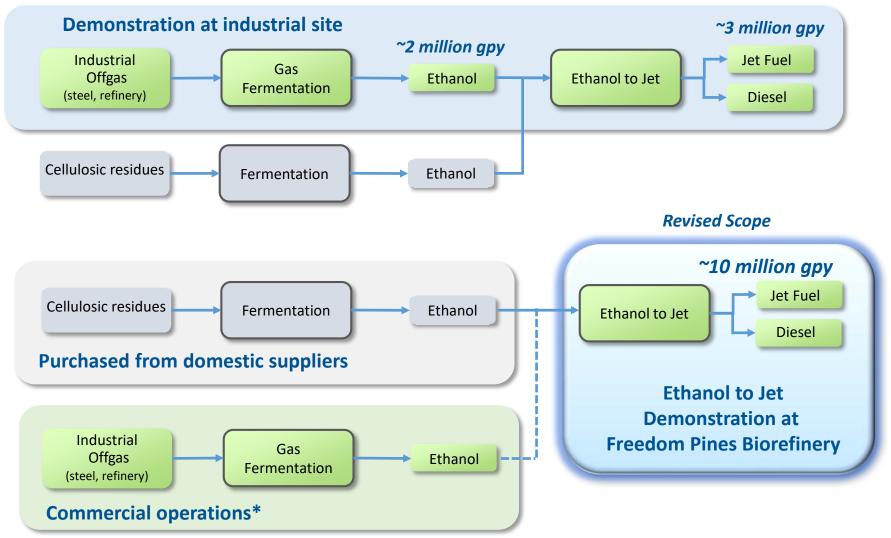
Project Overview

FOA: Project Development for Pilot and Demonstration Scale Manufacturing of Biofuels, Bioproducts, and Biopower (PD2B3)

- Project development and execution plans for the manufacture of Advanced or Cellulosic Biofuels
- Scale-up and validation of process technologies to enable the industry to build future pioneerand commercial-scale facilities

Progress Relative to Plan

- Transition to BP2 was later than anticipated
- Scope revised based on commercial developments external to project
- All activities projected to be completed on schedule within remaining resources


Changes in Project Team:

- Selected new EPC partner
- Added specialty contractors for environment/permitting and site design

Project Scope

Original Scope

*First commercial plant started up May 3,2018 (China, 16 million gpy)

LanzaTech

Project Overview – Plans and Achievements

Primary Phase 1 Outcomes	Achievements	Plans for Completion	
IE validation of gas fermentation and ethanol to jet processes	 Completed on-site evaluations and IE report issued 	N/A	
Develop technology transfer package for EPC	 Completed fermentation design and operations packages Completed ATJ process design package 	N/A	
Finalize project site	 Developed detailed site criteria Evaluated multiple industrial and non- industrial locations Selected Freedom Pines (Soperton, GA) 	N/A	
Obtain or amend federal, state, and local permits and obtain NEPA FONSI (if needed) for construction and operation	 Developed permitting plan Quantified environmental impacts Conducted site assessments and surveys Drafted permit applications Analyzed prior NEPA applications & approvals and existing permits 	 Finalize and submit permit applications based on final engineering and plant design Determine NEPA requirements and complete EA if necessary Augment EH&S protocols for construction and operation 	
Supply, offtake and financing agreements	 Developed business model, offtake & financing term sheets Initiated supply, offtake and finance discussions with multiple parties 	 Develop feedstock supply agreements Complete conditional supply and offtake agreements 	
Phase 2 Plans and Applications			

Carbon Smart[™]

LanzaTech

Plans and Achievements –FEL-3 (-5/+15%) estimate

Primary Phase 1AchievementsOutcomes		Plans for Completion	
ISBL			
Heat and Mass Balance	 Completed preliminary H&M Balance 	ery H&M Balance • Finalize H&M Balance	
Piping and Instrumentation Diagrams	 Completed and reviewed preliminary P&IDs 	Updated P&IDs reviewFinal P&IDs	
Equipment	 Generated preliminary equipment lists 	 Equipment quotes Final equipment costs Final equipment layout 	
Instrumentation	 Generated preliminary instrument list 	 Final instrument selection Instrumentation quotes Final instrumentation costs 	
Process lines	 Completed preliminary line sizing 	• Final line sizing	
Electrical and controls		• Electrical design and control architectur	
Safety	 Completed preliminary Process Hazard Analysis 	Final Process Hazard Analysis	
FEL-3 (-5/+15%) estimate	 Completed preliminary cost estimate 	• Final cost estimate	
OSBL and Facility			
Gap Analysis for Utilities	 Completed initial assessment 	 Incorporate into final cost estimate 	
Logistics for Feed/Product	In Progress assessment	• Finalize cost estimate	
Storage for Feed/Product	 In Progress analysis and design 	• Finalize cost estimate	
on Smart™		Lanzal	

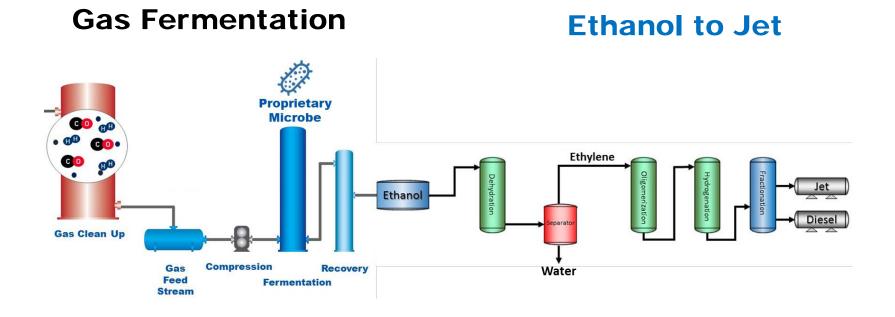
2 – Approach (Technical)

Approach (Technical)

Overall Technical Approach

- Leverage data from prior scales studies of ethanol based alcohol to jet process chemistry.
- Apply detailed process modeling to inform engineering and catalyst design and costing for a technologically new demonstration scale manufacturing facility which produces drop-in hydrocarbon fuels from cellulosic or waste feedstocks

Critical Success Factors


- Technical:
 - Complete the necessary design and engineering required to achieve a -5/+15 cost estimate.
 - Acquire the necessary approvals to construct a 10 million gallon/yr demonstration facility at the LanzaTech Freedom Pines Biorefinery
 - Complete fit for purpose testing and summarize data for review by OEM's, FAA and ASTM committees to obtain approval for the ethanol based alcohol to jet pathway
- Business:
 - Conditional agreements for ethanol supply and product offtake
 - Establish term sheet(s) for financing

Potential Challenges

- Identifying near term sources of qualifying ethanol in sufficient quantities
- Continued low oil prices create a challenge for alternative jet (and diesel), although offset by incentives

Proposed Technology Ready For Scale Up

Each Technology Component Commercial or Proven Each Integrated Technology Proven at Demo Scale

Commercial Gas Fermentation

Started up May 3, 2018

LanzaJet: Ready for Commercial Use

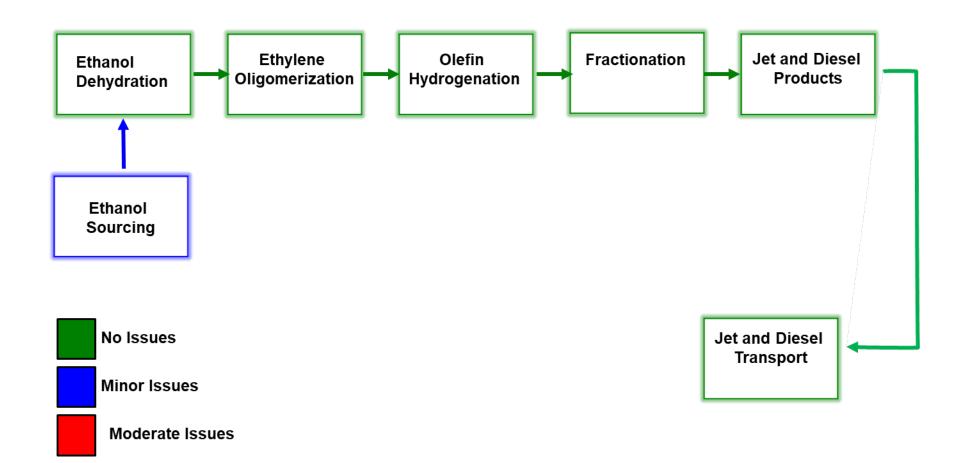
 ✓ 4,000 gallons Jet
 ✓ 600 gallons Diesel
 Waste Gas Ethanol from RSB Certified Facility Grain Ethanol

Fuel Property	Jet A Spec	LanzaTech ATJ-SPK	50/50% v with Jet A
Freeze Point, °C	-40 max	-61	-54
Energy Density, MJ/kg	42.8 min	44.4	43.8
Thermal Stability	Baseline	Excellent	Excellent
Viscosity @ -40 °C mm²/sec	12 max	7.0	9.3
Hydrogen %	13.4 min	15.1	14.5
Aromatics %	8 min, 25 max	Nil	8.8
Sulfur, total mass %	0.30 max	<0.001	0.02

<text><section-header><text><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text>

RSB

April 1, 2018 D7566 ATJ SPK Annex A5 ✓ Ethanol feedstock ✓ Final blend ratio to max 50 %



Flown on 92% LanzaJet SPK 80% Lower Contrails and Soot Particles 4 Flights

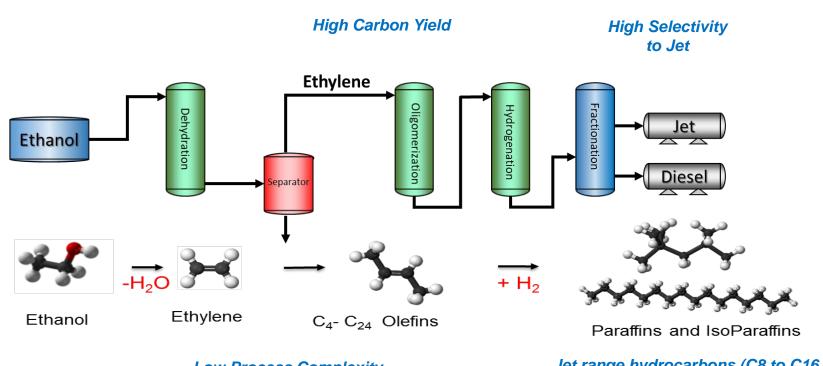
Ethanol to Jet Process Operations Block Diagram

2 – Approach (Management)

Project Management Approach

Project Management Platform

- Developed through LanzaTech's experience in managing multi-task, multi-million-dollar R&D and engineering projects.
- Robust project management platform that minimizes project execution risk and increases the certainty of a successful project outcome.
- Robust ERP/project management software that produces weekly detailed financial and resource management (hours) reports.
- Experienced cost accounting personnel with robust processes, policies and oversight.
- Platform follows generally accepted project management principles and guidelines


Project Coordination

- At least weekly phone meetings with key technical partners, such as EPC and environmental subcontractors
- In-person planning and review meetings at contractor or project sites
- Monthly budget and schedule reviews

3 – Technical Accomplishments/ Progress/Results

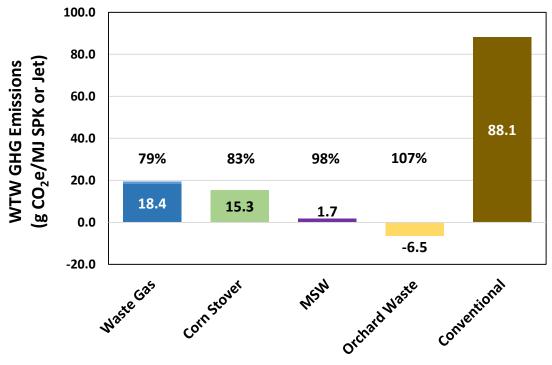
Ethanol to Jet Process

Low Process Complexity

Jet range hydrocarbons (C8 to C16) selectively built

Modeling Based on Prior-Scale Production

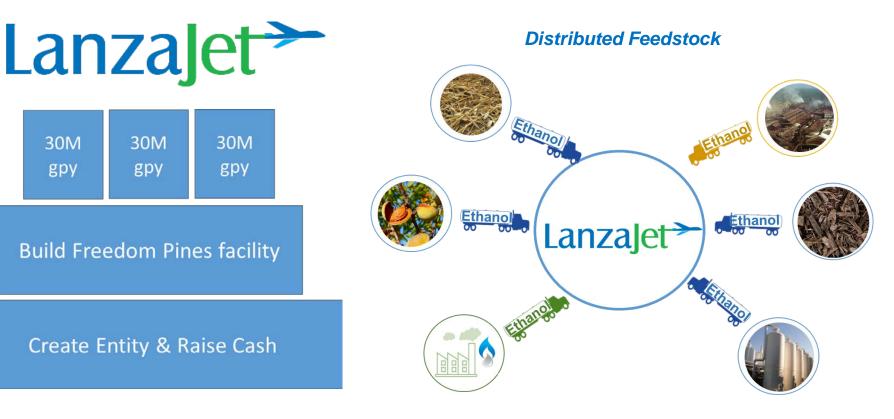
Environmental and Permitting Considerations


- Project site previously developed and permitted for commercial thermochemical biorefinery
- Prior NEPA EAs & FONSIs expediting additional NEPA reviews, minimal incremental impacts
- Physical footprint of the developed site will not change, Project leverages existing permits
- Project engineering designs and equipment specs reviewed to quantify process inputs and outputs needed to inform EA and permit applications / modifications
- Analyzed existing air, water, and other permits and updated cultural and wetland surveys
- Comprehensive permitting plan established and initiated

Carbon Smart™

Life Cycle Assessments

Emissions calculated for ATJ produced from a variety of waste-based ethanol sources



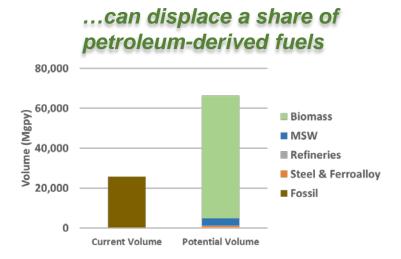
GHG Emissions

Reductions based on GREET comparator (88.1 g- CO_2e/MJ), shown at right.

Business and Supply Chain Models

Accelerating Path to Commercial Through Creation of Subsidiary **Centralized Production**

4 – Relevance


Relevance

Directly supports BETO's strategic goal:

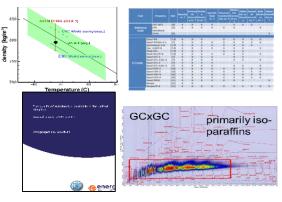
Develop **commercially viable** bioenergy and bioproduct technologies to enable the sustainable nationwide production of biofuels that are compatible with today's transportation infrastructure, can reduce greenhouse gas emissions relative to petroleumderived fuels, and can displace a share of petroleum-derived fuels to reduce U.S. dependence on oil and encourage the creation of a new domestic bioenergy industry.¹

...sustainable nationwide production

Directly supports BETO's objective to:

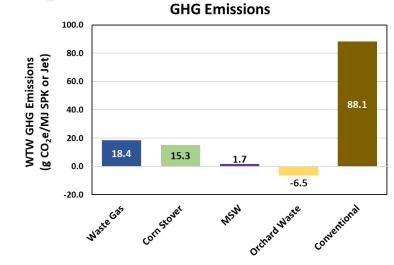
By 2022, validate successful runs of one biofuels manufacturing processing using a hydrocarbon fuels pathway at demonstration-scale.²

Carbon Smart[™]

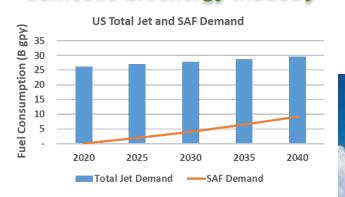

1. MYPP, p. 1-19; 2. MYPP, p 1-32. LanzaTech

...reduce greenhouse gas emissions

...compatible with today's transportation infrastructure



On April 1, 2018 ASTM Intl. Revised D7566 ATJ SPK Annex A5


- · Added Ethanol as a feedstock
- Increased final blend ratio to max 50 %


...commercially viable

...encourage the creation of a new domestic bioenergy industry

5 – Future Work

Future Work

Design and Engineering

- Complete Basic Engineering Package
- Complete FEL-3 -5/+15 cost estimate (ISBL, OSBL, facilities)

Business, Regulatory, and Environmental

- Complete permit applications and NEPA review
- Finalize feedstock and offtake agreements
- Finalize financing plan
- Finalize logistics plan

Documentation and Planning

• Develop Phase 2 plans and application documents

Go/No-Go Decision

Independent Engineering Review at end of Phase 1

Remaining budget is sufficient to complete the proposed tasks.

Summary

Technology Status and Approach

- Technology is ready for deployment at planned scale
- Sustainable aviation fuel qualified and demonstrated in commercial flight
- Process models completed as basis for design and engineering tasks

Technical and Business Accomplishments

- Site selected and committed
- Engineering and cost estimation are on track for completion
- Plans for integration with existing facility are well underway
- Feedstock and product logistics plans outlined
- Initial evaluation of environmental impacts complete, showing minimal impact at site
- Business and financing model well-developed

Relevance of Project

- Fully supports BETO's strategic mission
- Will lead to a reliable and expanding ethanol market, independent of road transport
- Paves the way for a domestic sustainable aviation sector built around diverse waste and residue feedstocks

Future Work

• On track for completion of Phase 1 activities with remaining resources