

FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR

May 2, 2019 | San Diego, CA

San Nicolas Island UESC Energy Conservation Projects

SAN NICOLAS ISLAND

Introductions

- » Roles
- » Responsibilities

SoCalGas

Gordon Maynard, Team Lead Pride Metcalf, Project Manager

Island Overview

San Nicolas Island (SNI) is a US Navy owned and operated island. Located about 65 miles southwest of Point Mugu, it is the cornerstone in the Sea Range capabilities.

Due to its **instrumentation**, **isolation** and **shoreline characteristics**, SNI is ideal for conducting test and training exercises and for providing littoral warfare training, including tri-service and theater warfare exercises.

Navy Strategic Objective

Goal: The Navy highly values energy resiliency and reliability aboard SNI.

The SNI Power Strategy had to address:

Prime Drivers:

- » <u>Resilient</u>, renewable power
- » <u>Reliable</u> infrastructure & power

Associative Benefits:

» <u>Energy conservation</u>

Energy Conservation Measures

Prime Drivers

Resiliency

Wind TurbineGenerators (WTG)

Reliability

- » Hybrid System
 Supervisory
 Controller
 (SCADA)
- » Synchronous Condenser
- » High Speed Load Bank
- » Diesel Generator

Associative Benefits

Energy Conservation

- » Generator Coolant Heater
- » Generators' Radiator VFDs
- » Pool Thermal Solar
- » Lighting retrofits

Presentation Overview

Discussion Topics

- » Setting
- » Logistical Considerations
- » Design Considerations
- » Pre-construction Load Profile
- » Energy Strategy

Remote Location

Setting – Preservation

Setting – Preservation (cont.)

Setting – Erosion and Slope Stability Realities

Setting – Location Considerations

Logistical Considerations

Design Considerations

Location, location, location

- Determining the size and final placement of the wind turbine generators
- » Given the previously mentioned constraints, and...
- » Made in America

Navy's 3 Pillars

Drivers:

- » Reliability
- » Resiliency

Associative Benefits:

» Energy Reduction & Efficiency

SNI Typical *Pre-construction Load Profile*

Notes:

- 1. Load Profile Typical daily use.
- 2. **Base Load** lowest *safe* generator turndown.

Resulting *Energy Strategy*

Resiliency & Reliability

- Seven 100-kw wind turbine generators with custom 8-ft diameter by 16-ft deep pre-cast foundations
- » Hybrid System SCADA primary and secondary controllers
- » Synchronous Condenser & 160-kW Load Bank
- » 2.2-miles underground 12-kV and fiber optic communications infrastructure
- » Local and remote (powerhouse) control of wind turbine generators

Energy Conservation Measures

- » 750-kW, 1,200-RPM reciprocating engine equipped with 1,000-kW alternator
- » Thermal Solar Pool Heating System
- Hot water to Oil heat recovery system on all power plant generators, eliminating electric block heaters
- Variable Frequency Drives on all Generator radiators fans
- » High-efficiency lighting retrofits

Resulting *Energy Strategy*

Wind Turbine Generators

Nacelles – manufactured in Vermont

- » Direct drive generator
- » 100-kW capacity rated
- » Cut-in Speed: 7.8-mph
- » Cut out Speed: 56-mph

Blades - manufactured in San Diego, CA

- » Fixed pitch blade length: 30'
- » Rotor diameter: 69'
- Towers manufactured in Wisconsin
- » Tubular monopile in 3 sections
- » Tower height: 117'
- » Hub height: 121'
- » Maximum height: 156' (to tip of vertical blade)
- Internal ladder access to nacelle with emergency decent
- Foundations manufactured in California
- » Precast concrete 16' deep by 8' Ø

Strategic Drivers – Results

Resiliency Pillar

- Seven 100-kW Wind Turbines generating electricity above minimum generator output
- » New wind turbine switchgear that can accommodate a battery system
- » Five 1,000-kW generators (one new) with one in constant operation and four in "standby" mode, kept warm by the active generator's recirculating hot water via individual hot water to oil heat exchangers
- Fewer annual refueling barge runs extended from monthly to 3 – 4 times per year (depending on operations)
- » Distributed, redundant, renewable power

Reliability Pillar

- » Power factor improved from 0.5 to 1.0
- » High Speed Scada primary and secondary smart load controllers (HSSLC) that intelligently schedules and matches electricity load to generator(s), wind turbines, frequency condenser and load bank
- » Power outage and power quality issues are rare

Energy Conservation Benefits

Energy Efficiency Pillar

- » Typical daily electricity profile reduced from 550 to 975-kW to 200 to 500-kW demand
- » New generator minimum output 160-kW as opposed to previous 500kW
- » Project cost ~\$21M
- » Estimated simple payback: <20-yrs
- » Estimated SIR >1.2

Summary

- » These installed measures have proven to be successful
- » But we are not finished improved operational adjustments and tuning should yield incremental savings.
- » Navy considering additional Energy Measures that improves this missioncritical, isolated micro-grid and further enhances its power resiliency and reliability

CLOSING COMMENTS

San Nicolas Island UESC Energy Conservation Projects

SAN NICOLAS ISLAND

