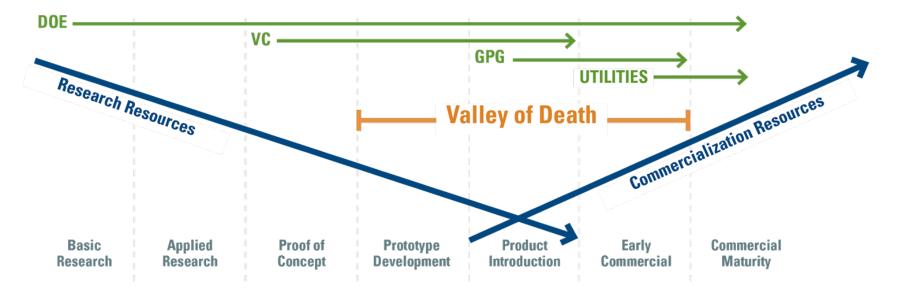
Efficiency as Resilience

FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR

San Diego, CA | May 2–3, 2019

- Overview of GSA's Emerging Building Technologies Program
- □ Efficiency, Resilience and the Bottom Line
- 2020 Request for Information: Grid Interactive Efficient Buildings (GEBs)

GSA: Largest U.S. Portfolio of Commercial Office Space

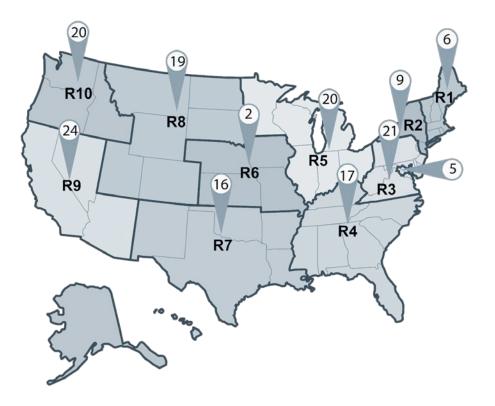

8,721	1,574	\$325M
PROPERTIES MANAGED, 377M ft ²	OWNED, 188M ft ²	ANNUAL ENERGY COSTS FOR OWNED REAL-ESTATE

Emerging Building Technologies' two programs — GSA Proving Ground (GPG) and Pilot to Portfolio (P2P) — enable GSA to make sound investment decisions in next-generation building technologies based on their actual performance.

GSA Proving Ground – What Works Best?

GPG accelerates market acceptance by objectively assessing innovative building technologies in real-world environments.

GPG Objectives


Identify promising technologies at the edge of commercialization

Pilot technology installations within GSA's real estate portfolio

Partner with Department of Energy national laboratories to objectively evaluate actual performance

Identify technologies with broad deployment potential for GSA, coordinate results with broader federal and CRE community

GPG Test Beds

Test-bed locations are representative of broad conditions

40 Technologies Tested by GPG with Published Results

Building Envelope	HVAC	Lighting	Energy Management	Water	On-Site Renewables
Electrochromic Windows	Small Circulator Pumps	Advanced Lighting Controls	Advanced Power Strips	Advanced Oxidation Process for Cooling Towers	Honeycomb Solar Thermal Collector
Hi-R Low-E Window Retrofit System	Condensing Boilers	Integrated Daylighting Systems	Chiller Plant Control Optimization System	Alternative Water Treatment for Cooling Towers	Photovoltaic System Performance
Low-E Window Film	Fan Belts: Synchronous and Cogged	LED Fixtures with Integrated Advanced Lighting Controls	Socially Driven HVAC for Personal Control	Catalyst-Based Scale Prevention for Domestic Hot Water Systems	Photovoltaic-Thermal Hybrid Solar System
Nanocoating Solar Control Films	Indirect Evaporative Cooler	LED Downlight Lamps for CFL Fixtures	Wireless Pneumatic Thermostats	Electrochemical Water Treatment for Cooling Towers	Wood-Pellet Biomass Boilers
Thermochromic Windows	High-Performing Commercial Rooftop Units	Occupant Responsive Lighting	Wireless Sensor Networks for Data Centers	Weather Station for Irrigation Control	
Vacuum Insulated Panels for Roofing Applications	Smart Ceiling Fans	TLED Lighting Retrofits with Dedicated Drivers		Wireless Soil-Moisture Sensors for Irrigation Control	
	Variable Refrigerant Flow	Wireless Advanced Lighting Controls			
	Variable-Speed Maglev Chiller				
	Variable-Speed Screw Chiller				

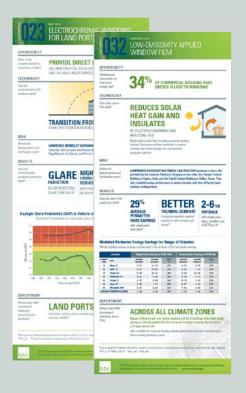
Technologies Under Assessment

Building Envelope Energy Management On-Site Renewables HVAC Lighting Water Drop-In Smart Switched Adaptive Control for Chilled Catalyst based Water DC Microgrid Reluctance Motor Water Plants Treatment for Cooling Towers Setpoint Reset Circuit-Level Energy Monitoring and Partial Monitoring Water Softening for Cooling Towers Smart Scrubbers for HVAC Connected Building Load Reduction **Operating System** Wireless Sensors and Analytics

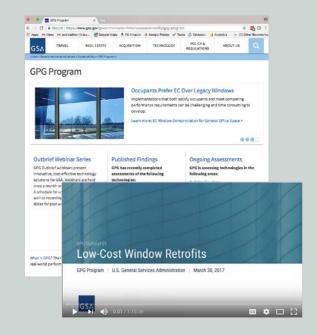
Pilot to Portfolio – Deliver Value and Savings

P2P guides GSA's investment decisions in next-generation building technologies

68	40	26	13	\$7M
TECHNOLOGIES	REPORTS	TECHNOLOGIES	TECHNOLOGIES	ESTIMATED
EVALUATED	PUBLISHED	PROVEN FOR GSA	DEPLOYED	ANNUAL SAVINGS


Influencing Internal Processes

P2P works with GSA's existing policies and processes to support the introduction of next-generation technologies at key life-cycle entry points—end-of-life replacement, retrofits and new construction.


END-OF-LIFE REPLACEMENT	RETROFITS	NEW CONSTRUCTION
Next time you buy that, buy this instead	Choose best in class performance and/or payback	Target technologies with the biggest impact

BUILDING TECHNOLOGY LIFE CYCLE ENTRY POINTS

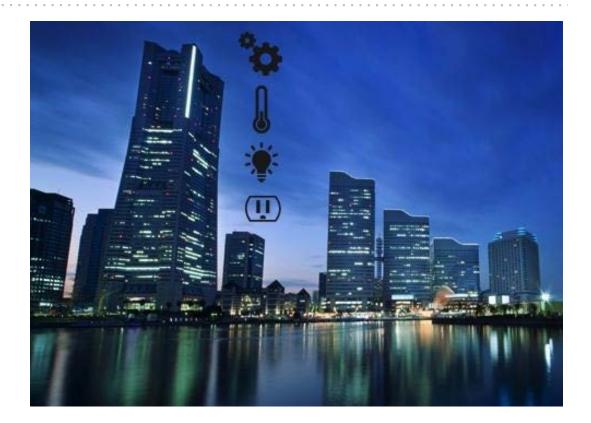
Stakeholders: Test-bed Outcomes Publicly Available

Overview Infographics

Technical Report & 4-Page Findings

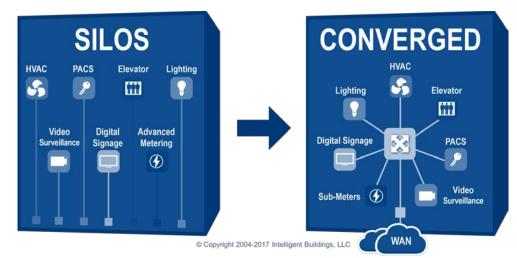
Website & Webinars

Efficiency, Resilience and Grid-Interactive Buildings

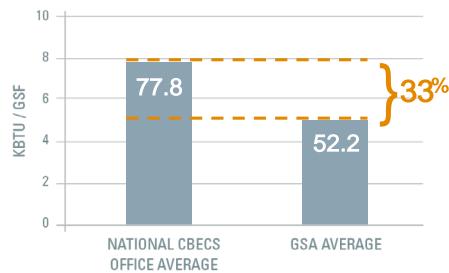

"Sir, the following paradigm shifts occurred while you were out."

Building 2030: Three Key Trends

IoT


Resilience

Grid-Smart Buildings

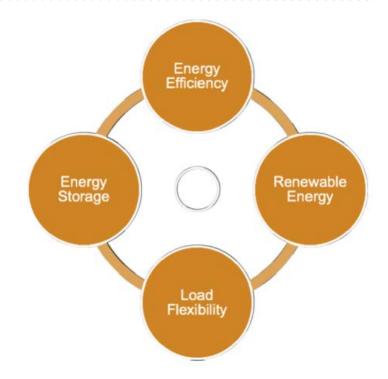


NextGen-Facilities Architecture: Digital/Connected/Converged

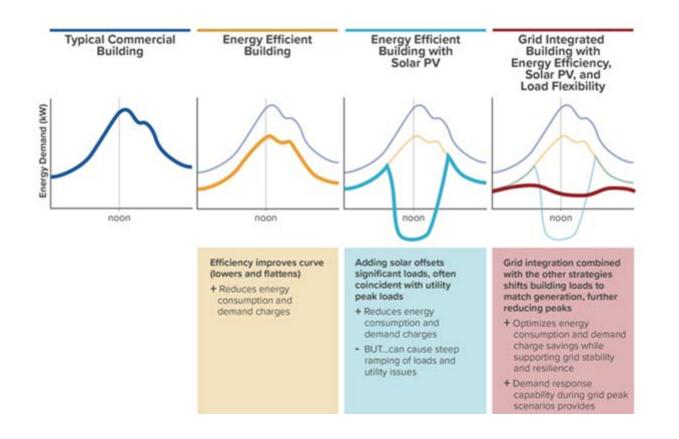
- Migrating to IP and wireless communication standards
- Converged systems enable improved building operations
- Integration provides cost savings via analytics, fault detection and grid-responsive control of systems

Efficiency, Resilience and the Bottom Line

ENERGY USE INTENSITY (EUI)


GSA buildings are 33%* more efficient than typical U.S. commercial buildings.

On-site resources & storage deliver cost savings and maintain core operational functionality in the face of power interruption.

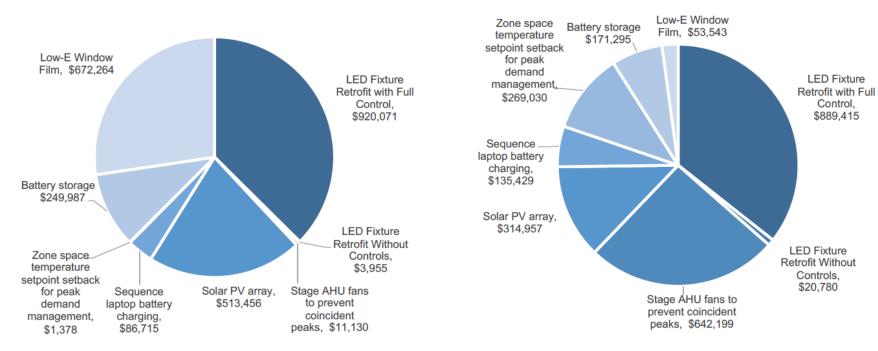

*January 2016, GSA Average EUI = 52.2 kBTU/GSF/yr, as reported per legislative mandate; 2012 CBECS, eia.gov

Grid-interactive Efficient Buildings (GEBs)

- Goes beyond traditional demand response to reshape a building's demand profile and enable load flexibility.
- Provides controls capability to maintain continuity of operations in the event of power interruption.
- By reacting to utility price signals, the building can reduce costs to the building and the utility.

Grid Integrated Buildings: Illustrative Load Profiles

GEB Measures Fall Into 4 Categories


Efficiencyfocused on reducing energyPrimarily \$/kWh savingse.g. LED fixture upgrades	 Peak-Focused Reductions peak-demand focused ECMs Primarily \$/kW savings e.g. controls for peak-focused LED dimming
 Dynamic Demand Shifting load flexibility Primarily time of use cost savings e.g. thermal storage for 	Demand Response and District Level Grid Services point-in-time events • \$/event, \$/contract term or \$ custom
peak reduction	 s/event, s/contract term of s custom e.g. batteries for demand response

Modeled GEB Strategy, GSA Facility, Fresno CA

High-level Bundle Economic	s	Cost-Effective Measures	Utility Rate Structure(s) Modelled
Baseline energy cost	\$1,043,122	LED Fixture Retrofit with Full Control	Utility: Pacific Gas and Electric
Annual energy cost savings	\$612,178	LED Fixture Retrofit Without Controls	Rate Modeled: <i>E20S Extra Large General</i> Moderate-to-high consumption charge (\$0.08–\$0.15/kWh)
First Cost (GEBs investment)	\$2,458,955	Stage AHU fans to prevent coincident peaks	 Moderate-to-high demand charge (\$19–\$37/kW) Seasonal variation in rates and structure
Rebates and Incentives	\$217,051	 Solar PV array Sequence laptop battery charging Zone space temperature setpoint setback for peak demand management Battery storage Low-E Window Film 	Time-of-use rates
Payback of Bundle (yrs)	4.0		Other rates to consider: E19S Large General Time of Use
Payback w Incentives (yrs)	3.7		
NPV with Incentives	\$2,394,044		

Modeled GEB Strategy, GSA Facility, Fresno CA

Fresno, CA Investment (First Cost)

Fresno, CA NPV

2020 DOE/GSA Joint Program: Grid Interactive Efficient Buildings (GEBs)

Technologies submitted to the GEB RFI should:

Integrate – enable multiple building systems to interact and operate as an optimized system.

Aggregate– realize collective value of ECMs, storage, and on site renewables.

Coordinate– dynamically manage loads, generation and storage to reduce, shift, or modulate energy use in response to demand events.

Save– demonstrate payback and value at the whole building level.

Portfolio-Wide Deployment

350MW/YR PEAK LOAD REDUCTION

1/3 GSA annual energy spend

For more information: gsa.gov/GPG kevin.powell@gsa.gov