

Office of Electricity Activities

US Department of Energy

Briefing for the State Energy Advisory Board

April 26, 2019

OE Mission

- Provide national leadership to ensure a secure, resilient and reliable energy delivery system.
- Develop technologies to improve the infrastructure that brings electricity into our homes, offices, and factories.
- Support development of the federal and state electricity policies and programs that shape electricity system planning and market operations.
- Drive electric grid modernization and resiliency through research, partnerships, facilitation, and modeling and analytics.

Key OE Priorities

North American Energy Resiliency Model

Megawatt Scale Grid Storage

Revolutionize Sensing Technology Utilization

Resilient Transmission Assets

OE R&D Program

Grid Controls and Communications	Transmission Reliability and Resilience	Synchrophasors		Advanced Grid Modeling			
Grid Con Commur	Resilient Distribution Systems	Advanced Distribution Systems		inced ogrids	Dynamic Controls and Communications	High-Fidelity &	
Grid Systems and Components	Transformer Resilience and Advanced Components	Advance	Low-Cost Sensors				
	Energy Storage Systems						

Focus of OE Technical Assistance Efforts

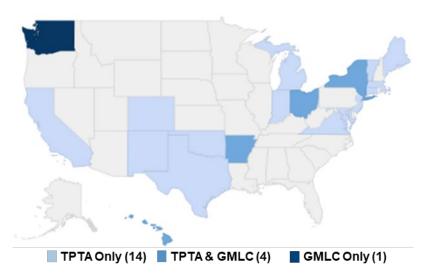
- 1. Focus TA around specific pressing issues where guidance, frameworks, and roadmapping would prove useful:
 - a) Technology investment strategies for grid modernization
 - b) Decision frameworks to guide resilience investments
 - c) Integrated planning processes (resource, transmission and distribution)
 - d) Economic evaluation of resource alternatives (portfolios)
 - e) Operational coordination across the bulk power, distribution, customer and merchant domains
- 2. Focused collaboration with N-Groups and internal DOE partners on addressing key issues

N-Groups

The N-Groups provide a platform to collaborate on important issues*

Organization	FY19 Focus			
NARUC – National Association of Regulatory Utility Commissioners	Performance-based regulation and compensation mechanisms, rate design, electric vehicles, TA to Puerto Rico, integrated resource and distribution system planning (with NASEO)			
NCEP – National Council on Electricity Policy	T-D coordination (incl planning, operations, and markets), grid evolution and modernization			
NASEO – National Association of State Energy Officials	Grid modernization planning, advancing utility-scale storage, bulk power system modeling and planning, Stafford Act changes, electricity and natural gas issues, integrated resource and distribution planning (with NARUC)			
NGA – National Governors Association	Smarter States – Smarter Communities Learning Lab, utility incentives, integrated distribution system planning, grid resilience			
NCSL – National Conference of State Legislatures	Grid modernization and DERs, integrated resource planning, Energy Supply Task Force (incl natural gas delivery, nat gas and electricity market convergence, infrastructure challenges, workforce development, resilience)			
NASUCA – National Association of State Utility Advocates	Fundamental training on many topics, incl distribution systm planning and operations, application of new technologies			

^{*} through webinars, one-day seminars, workshops, conferences, reports, and co-managed initiatives


LBNL Technical Assistance to States

FY 18/19 TPTA-Funded Assistance:

- Approaches for using advanced metering infrastructure data for load forecasting and program evaluation for Indiana URC
- Training courses for state regulators and staff on distributed resources and state RPS for the MSU Institute
- Time-varying value of efficiency analysis for Michigan PSC
- Workshops on integrated resource planning practices for the Michigan PSC
- Briefing on the application of DERs for improving resilience for the New England Conference of Public Utility Commissioners
- Workshop on application of energy efficiency programs & policies for Hawaii PUC and SEO symposium
- Provided demand response resource assessment and modeling assumptions for Western Interconnection regional transmission expansion planning study
- Provided long-term electric utility planning assumptions to Western Electricity Coordinating Council via LBNL's Western Utility Resource Planning Portal created for WIEB
- Organized 5 regional workshops on integrated distribution system planning (with GMLC funding)

Direct TA Delivered to 19 States in FY18

(additional states served through regional workshops)

FY 18/19 GMLC-Funded Assistance:

- 3rd party demand response (DR) aggregation (AR)
- Utility investor valuation framework/incentives (CA)
- Performance-based regulation (HI, NY, RI, VT)
- Cost recovery mechanisms for DR (MN)
- Revenue decoupling (MT)
- Cost recovery for grid modernization (OH)
- Cost recovery for resilience & security (PA)

Future Electric Utility Regulation Series

A series of reports featuring *differing opinions* on major current and nearfuture electricity policy issues that are *not* settled.

These reports take a unique point-counterpoint approach to highlight different views on the future of electric utility regulation. Completed topics:

- 1. Electric Industry Structure and Regulatory Responses in a Distributed Energy Resources (DERs) Future
- 2. Distribution Systems in a High DER Future: Planning, Market Design, Operation and Oversight
- 3. Performance-Based Regulation in a High DER Future
- 4. Distribution System Pricing with Distributed Energy Resources
- 5. Recovery of Utility Fixed Costs: Utility, Consumer, Environmental and Economist Perspectives
- 6. The Future of Electricity Resource Planning
- 7. The Future of Centrally Organized Electricity Markets
- 8. Regulatory Incentives and Disincentives for Utility Investments in Grid Modernization
- 9. Value-Added Electricity Services: New Roles for Utilities and Third-Party Providers.
- 10. The Future of Transportation Electrification: Utility, Competitive Market and Consumer Perspectives
- 11. Forthcoming: Utility Investments in Resilience

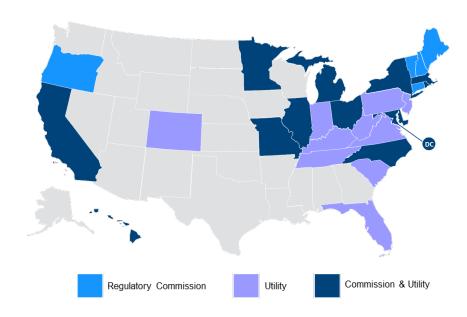
https://emp.lbl.gov/projects/feur

DSPx Scope

Next-Generation Distribution System Platform (DSPx) Initiative is working with state commissions and utilities across the country

Phase 1: Modern Grid Report (began late-2015)

Volume I: Maps Grid Functionality to Objectives

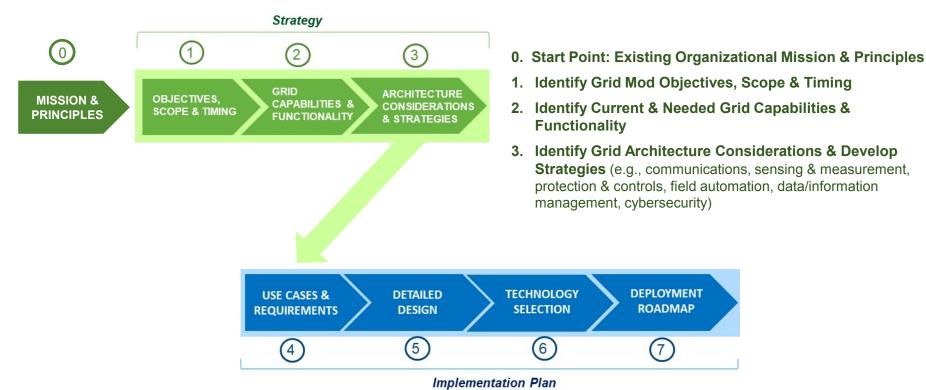

 Grid architectural approach that maps grid modernization functionality to state objectives within a planning, grid operations & market operations framework

Volume II: Assessment of Grid Technology Maturity

 Assessment of the readiness of advanced grid technology for implementation to enable functionality and objectives identified in Volume I (with technology adoption curves)

Volume III: Implementation Decision Guide

 Design and implementation considerations for deploying advanced grid capabilities: application of grid architecture, economic evaluation approaches, sourcing, proportional deployment


Phase 2: Modern Grid Guidebook (began in 2018)

- Provide a systems framework for the development of grid modernization strategy and investment roadmaps
- Cost-effectiveness approach
- Future grid workshop with EPRI (March 20-22 in Charlotte)

Grid Modernization Framework

Grid modernization strategy should inform the technology roadmap

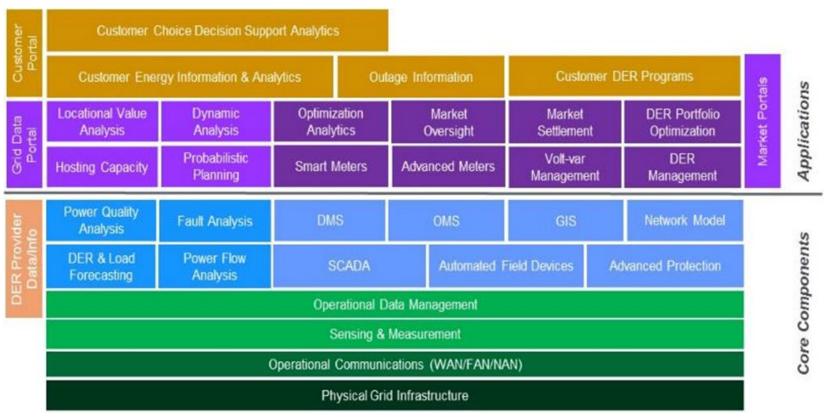
- 4. Develop Functional Use Cases to Identify Detailed Business & Technical Requirements
- 5. Develop Detailed Architecture & Design
- 6. Technology Assessment & Selection
- 7. Develop Deployment Roadmap & Cost Effectiveness Assessment

Architecture Manages Complexity

The engineering issues associated with the scale and scope of dynamic resources envisioned in policy objectives for grid modernization requires a holistic architectural approach

So, pick-up a pencil

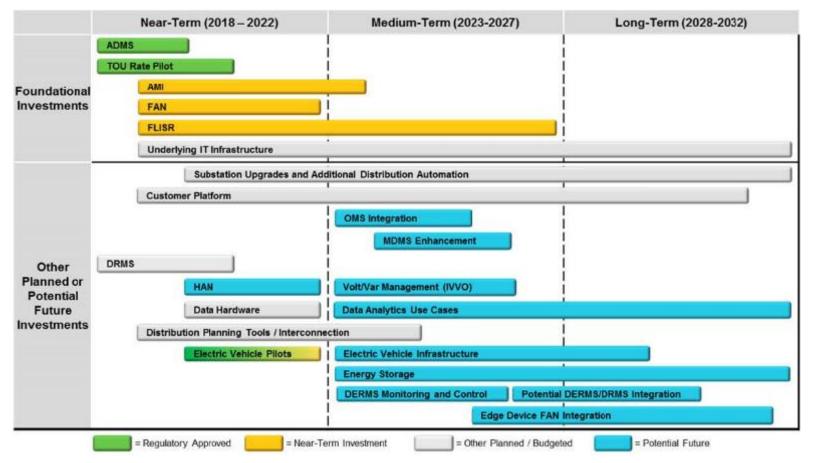
Before trying to hang windows



Resist temptation to start with technology choices

Distribution System Platform

Core components are foundational; applications layer on this foundation as additional functionality is needed



From DSPx, Volume 3 - Decision Guide

Sequencing of Investments

15-year view of the planned and potential advanced grid investments presented in the Xcel Energy 2018 Integrated Distribution Plan

From the Xcel Energy 2018 Integrated Distribution Plan. Link: https://www.edockets.state.mn.us/EFiling/edockets/searchDocuments.do?method=showPoup&documentId={E098D466-0000-C319-8EF6-08D47888D999}&documentTitle=201811-147534-01

Guidebook Outline & Development Timeline

Summary Outline

Introduction

Purpose of Guidebook, systems orientation, and structure of report

Planning a Modern Grid

Role of integrated distribution planning to inform strategy development and implementation planning

Modern Grid Strategy Development

Describe strategy development steps incl. architectural strategies

IV Modern Grid Roadmapping

Describe implementation planning process steps incl. technology management

V Grid Modernization Investment Economics

Expand on Vol. 3 framework including economic "lifecycle" of grid mod investments


VI Conclusion

Integrated Planning

Integrated planning identifies "Where", "When" and "How Much"

ENERGY OFFICE OF

NARUC-NASEO Task Force

Planning processes are uncoupled and do not permit a comprehensive assessment and optimization of bulk-level and distribution-level resources

- NARUC-NASEO Task Force on Comprehesive Electricity
 Planning convening state PUCs and energy directors in a 2year initiative to align distribution, resource and transmission
 planning processes
- 16 states: Arizona, Arkansas, California, Colorado, Hawaii, Indiana, Maine, Maryland, Michigan, Minnesota, North Carolina, Ohio, Puerto Rico, Rhode Island, Utah, Virginia
- DOE providing organizational support, analysis and content development
- April 2019 workshop priority needs identified:
 - Grid modernization planning framework
 - Incorporating resilience into planning
 - Forecasting load/DER uptake, and scenario analysis
 - Resource options evaluation and optimization

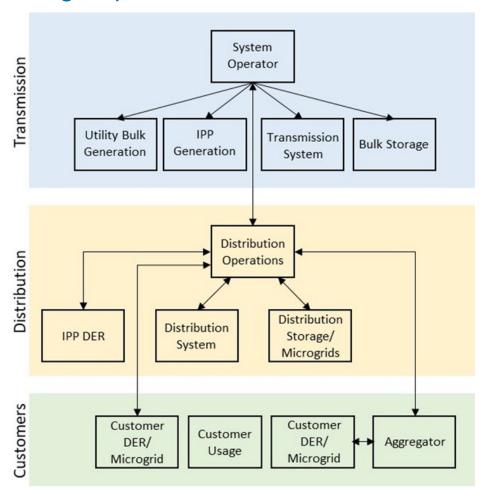
Task Force Co-Chairs

Dr. Laura Nelson,

Task Force Co-Vice-Chairs

Hon. Beth Trombold, OH

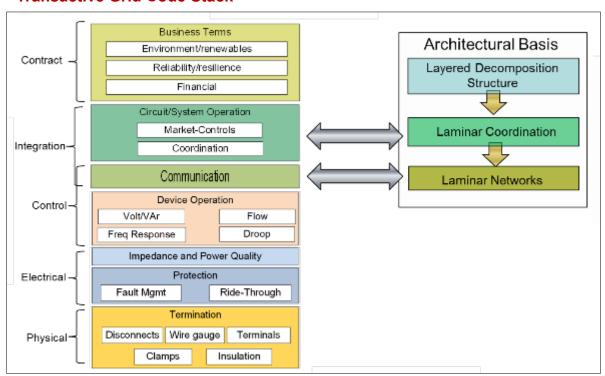
Andrew McAllister,


PRE	WRKSHP 1	WRKSHP 2	WRKSHP 3	WRKSHP 4	POST
Preparation	Status quo, vision, problem scope	Stakeholder input, barriers, options	Solution generation	Solution refinement	Solution implementation

Coordination Framework

A coordination framework should identify roles, responsibilities and information sharing requirements

- TPTA has applied grid architecture principles to examine and compare emerging coordination models world-wide and in the U.S
 - Observability
 - Scalability
 - Cyber security vulnerability
 - Layered decomposition
 - Tier bypassing
 - Hidden coupling
 - Latency cascading
- TPTA developing an evaluation process and set of decision-making guidelines to address evolving needs for greater coordination, including:
 - A rigorous stakeholder process (internal & external)
 - Developing a general distribution grid code
 - A maturity assessment of relevant standards and technology gaps



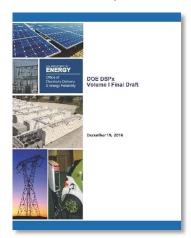
Transactive Grid Codes

Transactive Grid Codes contain physical and electrical requirements; control, communication and integration terms, and business rules

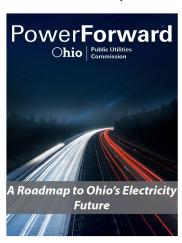
Transactive Grid Code Stack

Written by utilities to tell prosumers, building energy managers, energy service organizations, device/system vendors what requirements they must meet

From JD Taft, Architectural Basis for Highly Distributed Power Grids: Frameworks, Networks, and Grid Codes. PNNL-25480, June 2016


Thank You

Contacts:


Catherine Jereza, <u>catherine.jereza@hq.doe.gov</u>
Joe Paladino, <u>joseph.paladino@hq.doe.gov</u>

References:

Modern Distribution
Grid Report

https://gridarchitecture.pnnl. gov/modern-griddistribution-project.aspx PUCO Grid Mod Roadmap


https://puco.maps.arcgis.com/apps/ Cascade/index.html?appid=59a9cd 1f405547c89e1066e9f195b0b1 LBNL Future Electric Utility Regulation Series Website: https://emp.lbl.gov/future-

electric-utility-regulation-series

PNNL Grid Architecture Website:

http://gridarchitecture.pnnl.gov

Grid Modernization Strategy Using DSPx

www.hawaiianelectric.com/ gridmod

