

State Energy Advisory Board (STEAB)

U.S. Department of Energy Resilience Tools

CHP for Resiliency Accelerator

Anne Hampson ICF

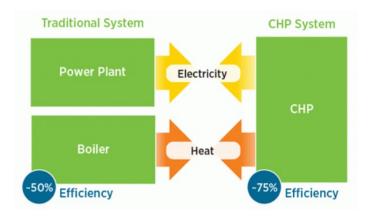
What is CHP and How Does it Increase Resilience?

What is CHP?

 CHP, or cogeneration, is the production of electricity and capture of waste heat to provide useful thermal energy for space heating, cooling, DHW, or industrial processes (recip. engines, steam turbines, microturbines, fuel cells)

How Does CHP Increase Resilience?

For end users:


- Provides continuous supply of electricity and thermal energy for critical loads
- Can be configured to automatically switch to "island mode" during a utility outage, and to "black start" without grid power
- Ability to withstand long, multiday outages

For utilities:

- Enhances grid stability and relieves grid congestion
- Enables microgrid deployment for balancing renewable power and providing a diverse generation mix

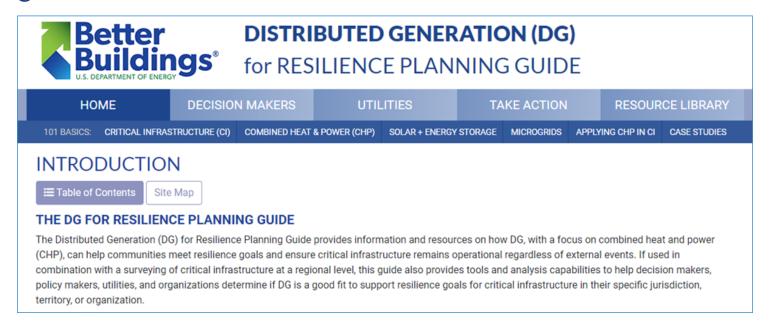
For communities:

 Keeps critical facilities like hospitals and emergency services operating and responsive to community needs

CHP for Resiliency Accelerator

Purpose:

- Incorporate consideration of CHP into resiliency planning efforts at the city, state, and utility levels
- Collaborate with Partners to:
 - Assess opportunities for CHP to maintain critical operations
 - Document Partner process for replicability
- Key Materials Developed:
 - 1. DG for Resiliency Planning Guide
- 2. CHP for Resiliency Screening Tool
- 3. DER Matrix Issue Brief
- 4. Partner Profiles


https://betterbuildingsinitiative.energy.gov/accele rators/combined-heat-and-power-resiliency

The Distributed Generation (DG) for Resilience Planning Guide

Web-based guide that provides information and resources on how distributed generation (w/a focus on CHP), can help communities meet resilience goals and ensure critical infrastructure remains operational regardless of external events.

Available at: https://resilienceguide.dg.industrialenergytools.com/

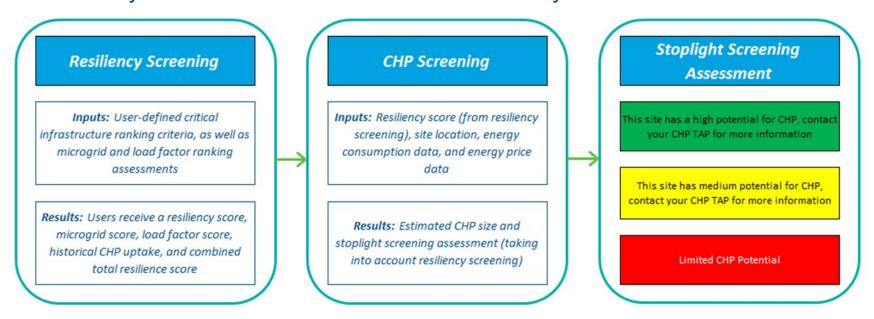
Two Main Sections to the Guide

- Stakeholder Action Pages
 - Decision Makers
 - Utilities
 - Take Action
 - Resource Library
- Information and resources for resiliency planners to actively use to incorporate CHP in their planning process.

- 101 Pages: Background Information
 - Critical Infrastructure
 - Combined Heat and Power
 - Solar + Energy Storage
 - Microgrids
 - Applying CHP in Critical Infrastructure
 - Case Studies

Take Action Page

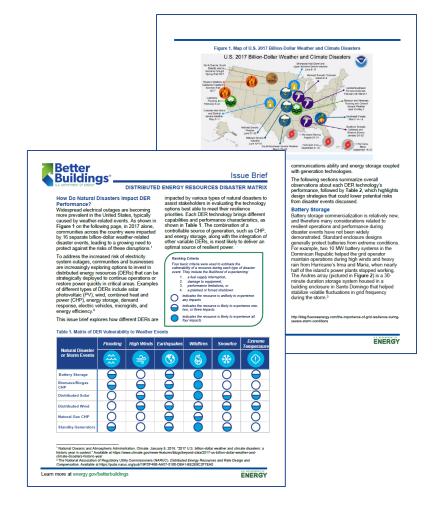
- Provide user with an efficient approach to quickly assess a critical infrastructure portfolio for potential DG deployment, and/or;
- Provide a framework for reviewing existing resiliency strategies and policies, and developing new programs.
- Steps 1 & 2: Identify and Rank CI Sectors and Subsectors Conducive to DG Technologies
 - Provides users with criteria for identifying and prioritizing CI sectors conducive to DG technologies
- Step 3: Individual Site Assessments and Next Steps
 - Individual Site Assessments: Tools that can be used to perform individual site assessment of DG technologies are provided for users:
 - CHP Site Screening Tool
 - Solar + Storage Screening Tool
 - Microgrid Modeling Tools


Table 2. Critical Infrastructure S	Sub-Sectors Conducive to CHP
CI Sector	Sub-sector Conducive to CHP
Transportation	Airports
Information Technology	Data Centers
Government Facilities	College/Universities Schools Prisons Military Bases
Emergency Services	Police Stations Fire Stations
Water and Wastewater Systems	Waste Water Treatment Plants
Food and Agriculture	Food Processing Food Distribution Centers Supermarkets
Commercial Facilities	Lodging Multi-Family Buildings
Healthcare and Public Health	Hospitals Nursing Homes
Healthcare and Public Health	Chemicals / Pharmaceuticals Food Processing

CHP for Resilience Screening Tool

Allows users to screen and rank individual sites or portfolios of buildings based on a variety of resilience metrics and their suitability for CHP

Resiliency Screening Factors: Government Continuity, Locational Ranking, Leverage/Scalability, Life Safety, Economic Impact, Microgrid, and Load Factor


Access the tool at the accelerator website under "Featured Resources": https://betterbuildingsinitiative.energy.gov/accelerators/combined-heat-and-power-resiliency

Issue Brief – Examining the Performance of Different DERs in Disaster Events

- Explores how different DERs are impacted by various types of natural disasters (flooding, high winds, extreme temperature, etc.)
- Goal: To assist stakeholders in evaluating the technology options best able to meet their resilience priorities

Matrix of DER vulnerability to weather events

National Biographic	Flooding	High Winds	Earthquakes	Wildfires	Snow/Ice	Extreme Temperature
Natural Disaster or Storm Events	***	3	(3)	\$	**	
Battery Storage	Θ	0	Θ		0	Θ
Biomass/Biogas CHP	Θ	Θ	$\overline{\bigcirc}$		0	0
Distributed Solar	0	$\overline{\bigcirc}$	$\overline{\bigcirc}$		$\overline{\bigcirc}$	$\overline{\bigcirc}$
Distributed Wind	0	$\overline{\bigcirc}$	$\overline{\bigcirc}$	\bigcirc	\bigcirc	$\overline{\bigcirc}$
Natural Gas CHP	0	0	$\overline{\bigcirc}$	\bigcirc	0	0
Standby Generators	$\overline{\bigcirc}$	0	$\overline{\bigcirc}$		$\overline{\bigcirc}$	0

Design considerations and other strategies to increase resilience of DERs

Natural Disaster or Storm Event	oo _{li} oo	High Wings	<i>Compuetes</i>	Milanes	Sommoo	Estreme demogramo
Resource	(2)	a	(§)	\$	*	(
Battery Storage	Elevate equipment above flood and storm surge levels Use NEMA-rated enclosures that protect against water damage Factor equipment repair or replacement in O&M plans	Use NEMA-rated enclosures to minimize exposure to debris Design EMS or protection systems to shut down at harmful wind speeds or conditions.	Utilize shock-mount system enclosures to maintain integrity of individual system components	Use built-in fire suppression system	Design enclosures to withstand snowlice loads Design with sealings and verting to address moisture Use NEMA-rated enclosures to minimize exposure to moisture	Design protection or EMS to withstand extreme temperatures Design system to shut down to protect component integrity
Biogas/Biom ass CHP	Elevate equipment and biomass stockpiles above flood levels For biogas, coordinate with the wastewater treatment on potential planned shutdowns	For biogas, use rigid covers to protect digester tanks For biomass, cover or protect onsite fuel supply stockpiles	Maintain industry standards for facilities sited near seismic activity	For biomass, use enclosures, fire protection, or containment strategies for fuel supply.	Design with proper freeze protection Protect biomass stockpiles from excess snow and ice	Use heating jackets designed for optimal temperatures and adequate thermal management systems Ensure systems are designed for regional temperature ranges
Distributed Solar	Design systems and framing for easy runoff and drainage, especially for commercial rooftop systems with flat roofs For ground mount, avoid siting in flood zones	Use secure, flush-mounted systems for rooftop solar Use flexible racking and anchoring systems Maintain ASCE standards for rooftop systems based on expected wind loads	Ensure roof mount design meets ASCE building code for seismic areas	If ground-mount, site in open areas away from flammable material (trees, shrubs, etc.)	Manually remove snowfice to clear panels Automonous mechanical cleaning (tiled removal) Install bifacial systems capable of absorbing irradiance on the back or front of panels	Site systems in applicable weather conditions Enhance design to maximize cooling and airflow in order to ensure optimal temperature conditions for modules and electrical components (inverters)
Distributed Wind	Design foundation for conditions in high water table Elevate controls and electronics above flood and storm surge levels Use site drainage strategy	Include design features and braking procedures to withstand hurricane force winds (feather blades, lock rotors, change orientation, etc.)	Design systems for ground acceleration rating based on typical seismic activity	Extend gravel apron around base of turbine	Install electro-thermal ice protection systems Use ice-resistant coating on blades	Design uninterruptible power supply to operate within adequate temperature range Add on "cold weather packages"
Natural Gas CHP	Elevate equipment above flood and storm surge levels	Locate systems indoors or protect with containers de signed to withstand high wind and debris	Shock-mount system enclosures Maintain industry standards for pipelines sited near seismic activity	Use fire protection systems for above-ground facilities associated with gas delivery networks	No additional design consideration needed	To ensure fuel availability, purchase "firm supply" to avoid curtailment To ensure fuel availability, To ensure fuel availa
Standby Generators	Elevate equipment above flood and storm surge levels Store enough fuel onsite to avoid delivery issues	Locate systems indoors or protect with containers designed to withstand high wind and debris	Purchase an earthquake- resistant model (IBC certified; subject to shake table testing)	Avoid siting in areas prone to wildfire Store enough fuel onsite to avoid delivery issues	Store enough fuel onsite to avoid delivery issues	Check generator batteries during cold weather Enclose the systemto protect from temperatures. Store "winter diesel" fuel in cold climates with additives to prevent gelling

Partner Profiles

- Summary of individual partner achievements throughout the accelerator and future plans
- Short profiles containing:
 - Partners' approach to resiliency planning
 - Program or project implementation related to CHP/DG
 - Lessons learned and future plans
 - Additional resources and information

CHP FOR RESILIENCY ACCELERATOR PARTNER PROFILES

The partner summary table highlights key partner accomplishments, initiatives, and strategies related to resilience planning, and implementing CHF or DG programs or projects. Please click on an individual partner to see more information in their individual partner profile. Partner profiles were completed through multiple interviews with each partner listed below and focus on 4 aspects: 1.) Resilience Planning, 2.) Program or Project Implementation, 3.) Lessons Learned, and 4.) Additional Information.

Partner Name	Partner Type	Key Accomplishments
City of Boston	City	Coordinated a pilot project for a multi-user CHP district energy microgrid and Community Energy Study
Healthcare Without Harm	Non-Profit Organization	Helped develop toolkits and initiatives focused on resilient healthcare facilities for the US Department of Health and Human Services' (HHS)
Hoboken, NJ	City	Completing a feasibility study for the development of a city-wide microgrid to connect and power critical and community facilities
International District Energy Association (IDEA)	Non-Profit Organization	Organizes stakeholder engagement events that highlight the importance of CHP, microgrids, and district energy in increasing energy resilience
Maryland Energy Administration	State Agency	Administers a CHP grant program designed to encourage the growth of CHP to improve end-user resilience throughout the state
Massachusetts Department of Energy Resources	State Agency	Provided project implementation support to add resiliency capabilities to clean energy technologies at hospitals
Miami-Dade Water and Sewer Department	City	Increasing the capacity of cogeneration units at two wastewater facilities studying of individual facilities to evaluate CHP and DER options
Missouri Department of Economic Development, Division of Energy	State Agency	Collaborated with Spire on several initiatives, such as co-hosting CHP summits focused on energy resiliency for critical facilities
Montgomery County, MD	County	Leading implementation of two pilot projects to enhance resiliency of individual facilities and the electric system with CHP
National Grid	Utility	Facilitated the interconnection of 900 MW of DERs for customers, and examining the feasibility of community microgrids in New York

CHP Technical Assistance Partnerships (TAPs) Are Here to Help

Northwest WA, OR, ID, AK www.northwestCHPTAP.org

David Van Holde, P.E. Washington State University 360-956-2071 VanHoldeD@energy.wsu.edu

Upper-West UT, CO, WY, MT, ND, SD www.upperwestCHPTAP.org

Gavin Dillingham, Ph.D. HARC 281-216-7147 gdillingham@harcresearch.org

Midwest MN, WI, MI, IL, IN, OH www.midwestCHPTAP.org

Cliff Haefke University of Illinois at Chicago 312-355-3476 chaefk1@uic.edu

Western CA, NV, AZ, HI www.westernCHPTAP.org

Gene Kogan Center for Sustainable Energy 858-633-8561 gene.kogan@energycenter.org

Southcentral TX, NM, OK, AR, LA www.southcentralCHPTAP.org

Gavin Dillingham, Ph.D. HARC 281-216-7147 gdillingham@harcresearch.org

Central NE, IA, KS, MO www.centralCHPTAP.org

Cliff Haefke University of Illinois at Chicago 312-355-3476 chaefk1@uic.edu

New England VT, NH, ME, MA, RI, CT www.newenglandCHPTAP.org

David Dvorak, Ph.D., P.E. University of Maine dvorak@maine.edu 207-581-2338

New York-New Jersey NY, NJ www.newyorknewjerseyCHPTAP.org

Tom Bourgeois Pace University 914-422-4013 tbourgeois@law.pace.edu

Mid-Atlantic PA, WV, VA, DE, MD, DC www.midatlanticCHPTAP.org

Jim Freihaut, Ph.D. The Pennsylvania State University 814-863-0083 jdf11@psu.edu

Southeast KY, TN, NC, SC, GA, FL, AL, MS www.southeastCHPTAP.org

Isaac Panzarella, P.E. North Carolina State University 919-515-0354 ipanzarella@ncsu.edu

Questions?

Anne Hampson

Anne.Hampson@icf.com

703-934-3324

