SolarDynamics

Advanced Trough with Lower-cost System-architecture (ATLAS)

SETO CSP Program Summit 2019 03/19/2019

PI: Patrick Marcotte

Patrick.Marcotte@SolarDynLLC.com

Presenting: Hank Price

Company Overview

SolarDynamic

- Solar Dynamics (SD) is a limited liability company formed in 2016
- SD is currently focused on 3 business areas:
 - Development of advanced parabolic trough collector & heliostat technologies,
 - Development of next generation CSP plant configurations to support development of new CSP projects, and
 - Technical support and services to existing CSP companies and CSP plants.
- SD has been awarded four U.S. DOE SunShot R&D Contracts
- SD Sub Tier Awards
 - Sandia CSP Gen3 Particle Tower
 - NREL CSP Best Practices
- Other
 - Ashalim Parabolic Trough Plant Technical Performance Model

SUMMARY STATEMENT

This project is modernizing a very successful parabolic trough collector architecture for lower cost and better molten salt HTF compatibility. The project targets a solar field energy delivery vs installed cost ratio \geq 20% higher than the state-of-the-art trough system¹, achieved by reducing collector installed cost from \$92/m² to \leq \$72/m² (\$2015, not including receivers) with minimal or no performance loss

Project innovations:

- World's largest CSP trough: 8.2m aperture, 21m-25m unit length, up to 210m long collector
- Built on extremely material-efficient SunBeam[™] helical steel space frame
- · Novel large-format glass mirror facets, drive actuator design, and pivot bearings
- Developed "from the ground up" for mass production and lean assembly

• Challenges:

- Balancing competing influences of:
- …larger aperture size vs (non-linear) wind load increases
- ...challenging dimensional control requirements vs complexity of alignment
- ...aggressive cost reductions sought for multiple components vs higher technical risks

Critical capability:

 Experienced team, leveraging strong commercial background and state-of-the-art design capability

1) State of the art reference: Abengoa SpaceTube SolarMat version, as reported under DE-EE0006357. Metric comparison based on both new and state-of-the-art collector systems circulating solar salt HTF with 565C maximum outlet temperature

SolarDynamic

KEY ACTIVITIES

Budget Period 1

- Reoptimize field layout using latest knowledge of cost, wind loads, HTF compatibility issues
- Improve wind load mitigation strategies; validate in wind tunnel
- Use "digital prototype" to co-optimize novel space frame, mirrors, drive, pylons
- Integrate mass production and lean assembly methods "from the ground up"
- Develop pathways for transition to wireless control and autonomous power supply

Budget Period 2

- Erect first-article mock up frame to inform design and manufacturability refinements
- Construct realistic ATLAS Near-Term prototype and obtain 3rd party optical qualification
- Contract 3rd party engineering review and component bench testing
- Build and test ATLAS Mid-Term prototype to initially validate most-aggressive designs
- Commercial outreach to secure path for industry funded demonstration and scale-up

SolarDynamic

Wind Tunnel Testing

Areas of exploration

- Loads at edge vs interior of solar field
- Correlated loading of linked multiple linked modules
- Row-to-row shielding, influence of tighter spacing
- Influence of mirror gaps
- Potential for alternative stow positions to reduce loading

Project wind tunnel study

Digital Prototype

Optical forecasting using new code developed for NREL SolTrace

ATLAS Collector

ATLAS concentrator digital and physical prototypes

Key metric improvements driving system cost savings

		EuroTrough	Abengoa SpaceTube	Solar Dynamics SunBeam (low-risk variant)
Concentrator Aperture W x L (m, gross)		5.77 x 11.9	8.18 x 15.9	8.18 x 20.5
Concentrator / Collector Aperture (m ² , gross)		69 / 824	125 / 1,250	168 / 1,680
% relative to State-of-the-Art (Abengoa SpaceTube)	Collector Aperture	-37%	1	<mark>+29%</mark>
	Frame components, per m ²	Not meas.	1	<mark>-32%</mark>
	Fasteners, per m ²	Not meas.	1	<mark>-44%</mark>
	Steel content under comparable design loading, mass per m2	Not meas.		<mark>-15%</mark>
	Foundations, Pylons, Axle Assemblies, Concentrator Modules, Assembly/Installation Steps (per m²)	+82%	-	<mark>-25%</mark>
	Loops, Piping, Interconnects, Collectors, Drives, Controllers, Instrumentation, Wiring (per m²)	+52%	-	<mark>-22%</mark>

KEY OUTCOMES AND IMPACT

SolarDynamic

- Period 1 Outcomes
 - ATLAS "near-term" 8.2 x 21m concentrator: 1st generation product-candidate using standard glass mirrors
 - ATLAS "mid-term" 8.2 x 25m concentrator: 2nd generation longer and lower-cost concentrator using new "large format" mirrors, streamlined support structure, and improved assembly/alignment scheme

Acknowledgment

 This project was made possible with funding from the US Department of Energy's Solar Energy Technology Office under award DE-EE0007121

