Development of an Ultra-High Efficiency Wide-Range Integrally-Geared Supercritical CO₂ Compressor-Expander

Southwest Research Institute Award # DE-EE0007114

DOE Funding: \$5,350,000 Cost-Share Funding: \$3,450,000

Principal Investigator: Jason Wilkes

Other Contributors: Tim Allison, Karl Wygant,

Rob Pelton

Introduction to Compressor-Expander Development Program

Phases of Development Program

- I Cycle modeling, turbomachinery and loop design [Completed]
- II IGC fabrication and loop construction [In Process]
- III Loop and IGC commissioning and full pressure and temperature testing

Design Objectives

- Design a reduced flow IGC to be tested in SwRI's 1 MW_e test loop.
 - Full flow wide-range compressor (50-70% range)
 - Reduced flow expander (705°C inlet temperature)
 - Full frame core (900\$/kW_e, 6¢/kW_eLCOE)
- Design a 10 MW_e cycle using a compander as the power block (targeting 50% at design point)
- Investigate off-design cycle operation, wide-range compression capabilities, and control schemes of an IGC based power block
- Test the unit at full temperature and pressure

Configuration of Integrally Geared Compressor-Expander Allows Unparalleled Application Flexibility

Integrated Turbomachinery for:

- Recompression Brayton Cycle,
- Recuperated Cycle,
- sCO₂ Expander Only,
- sCO₂ Compressor Only,
- sCO₂ Re-compressor only,

Can Integrate:

- Expander re-heat
- Compressor inter-stage cooling

Allows:

- Optimal stage rotational speeds
- Variable flow control

Ambient Cooling Leads to a Variation in Compressor Inlet Temperature

A Partially Shrouded Impeller was Incorporated to Increase Range

Conventio Relat

Open Air Back-to-back Tests Showed a Substantial Increase in Range Compared with a Conventional Stage

- Compare results to a fully shrouded reference e case designed with the same flow coefficient
- Test in SSTR at same scale and Mach numbe r as the wide-range stage
- Wide-range stage shows a 42% improvemen t in range compared to the reference model, no efficiency loss

Thermal-Mechanical Stress Levels are Well Managed

- Unique thermal management approach is applied,
- Allows thermal boundary between expander casing,
- Allows thermal boundary between gearbox,
- Meets ASME BPVC for long service life.

Reduced Flow Loop is Finalized and all Purchase Orders have been placed for all loop components

Stage 2 Compressor Impeller

- Completed Processes
 - ✓ Printing
 - ✓ Support material removal
 - ✓ Heat Treat/HIP
 - ✓ Machining
 - ✓ Inspection
- Processes Remaining
 - Cut Hirth coupling
 - CT Scan
 - Extrude Hone
 - Balance/Spin

Procurement Photos

Gearbox Fabrication

Gearbox Machining

Gearbox End Product

