

Exceptional service in the national interest

SETO CSP Program Summit 2019

Design and Implementation of a 1-3 MWth sCO2 Support Loop for Gen3 CSP Primary Heat Exchangers

Gen3 CSP Systems and Lab Support

Matthew Carlson, R&D S&E Mechanical Engineering Concentrating Solar Technologies, Sandia National Labs

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2019-2940 PE

energy.gov/solar-office

Gen3 CSP Pathway Pilot Plant Power Block

All three pathways require a largely similar power block

Design and implement a common cooling system

Breakdown of Work Activities

1. System Requirements

 Coordinate requirements definition and provide weightings to guide design decisions.

2. System Design

 Preliminary and detailed design including evaluations of configuration and component tradeoffs.

3. Procurement

 Pre-plan and execute procurement of equipment meeting requirements basis documents.

4. Construction

Oversee fabrication and assembly including packaging.

5. Acceptance Testing

 Cold-flow and heated testing to ensure requirements are met.

Hierarchical Approach to Definition and Review

Key Requirements Specified in the FOA

Requirement	Value	Source
Operating Fluid	Carbon Dioxide	DE-FOA-0001697
PHX Outlet Pressure	250 bar	DE-FOA-0001697
PHX Outlet Temperature	715 °C	DE-FOA-0001697
Thermal Duty	≥1 MWth	DE-FOA-0001697
Operational Time	≤16 hr/day*	DE-FOA-0001697
PHX Inlet Pressure	246 bar	1.5% pressure drop
PHX Inlet Temperature	565 °C	150 °C temperature rise
Mass Flow Rate	5.3 kg/s	Derived

^{*6} hours of operation plus energy delivery deferred up to 10 hours

Systems Engineering to Expand Requirements

- Interfacing with
 - the PHX
 - the facility
 - the operators
 - shippers
 - installers
 - maintainers
 - future modifications

Other Requirements Finalized in Q2

Category	Type	Key Source
PHX Outlet Conditions	Performance	DE-FOA-0001697
Operational Time	Performance	DE-FOA-0001697
Thermal Duty	Performance	DE-FOA-0001697
PHX Inlet Conditions	Operational	Topic 1 Teams
Transient Performance	Operational	Topic 1 Teams
System MAWP/MDMT	Design	Sandia SMEs
Plumbing Connections	Interfacing	Topic 1 Team EPCs
Electrical Connections	Interfacing	Topic 1 Team EPCs
Footprint, Height, Weight	Physical Constraints	Topic 1 Team EPCs
Forklift/Crane/Shipping	Handling/Shipping	Topic 1 Team EPCs
Replaceable Components	Adaptability	Topic 1 Teams

Process Flow Diagram and Key Alternatives

- Blowdown vs. recirculation
- Liquid pumping vs. gas compression
- 3. Low-temp vs. hightemp compression
- 4. High-temp recuperation vs. preheating and after-cooling

Interactions for Requirements Definition

Gas
Team &
EPC

PHX Datasheets

Facility Limitations

sCO2 Loop Team

Alternative Analyses

- Configurations
- Pressure Relief
- Pipe Connections

Design Analyses

Operational Analyses

- Filling and venting
- Emergency Shutdown
- Performance Range
- System Response
- Control API/HMI

sCO2 PHX Coolant System for Any Pathway

