

DOE Bioenergy Technologies Office (BETO) 2019 Project Peer Review

5.1.3.103 Novel, Biological, Sustainable and Low Energy CO₂ Separation

Session: Carbon Dioxide Utilization March 7, 2019

Min Zhang, National Renewable Energy Laboratory (NREL) Sonja Salmon, North Carolina State University (NCSU) Jesse Thompson, University of Kentucky -Center for Applied Energy Research (UK-CAER)

NC STATE UNIVERSITY

Wilson College of Textiles

Goal Statement

Goal

To develop a novel biological, sustainable, and low energy CO₂ waste gas scrubbing technology using **enzyme-accelerated solvents with low regeneration energy**

Outcome

- Provide advanced CO₂ scrubbing technologies aiming to enable a 20% energy reduction compared to the monoethanolamine (MEA) reference case (at 90% CO2 capture) using improved carbonic anhydrase (CA) with novel immobilization strategy and solvents with low regeneration energy
- Identify critical knowledgebase for industry and research community to further R&D working towards efficient capture of CO₂

Relevance

- Carbon scrubbing of flue gases in current CCS/CCU processes use MEA a large energetic penalty
- Low energy CO₂ scrubbing technology can not only provide cost savings for fossil fuel production but also lower the production cost for biopower
- Bioenergy with carbon capture and storage (BECCS) combining the use of biopower can produce energy with net-negative emissions

Quad Chart Overview

Timeline

- Start: FY 2019
- Merit review cycle: FY2019-2021
- 8 % complete of review cycle

	Total Costs Pre FY17**	FY 17 Costs	FY 18 Costs	Total Planned Funding (FY 19- Project End Date)
DOE Funded				\$1.45M
Project Cost Share*				\$550K Novozymes (in kind) \$75K NCSU \$75K UK-CAER

• Partners: If multiple DOE recipients are involved in the project, please list level of involvement, expressed as percentages of project funding from FY 17-18. [(i.e. NREL (70%); INL (30%)]

Barriers addressed:

Ct-D. Advanced Bioprocess Development: CO_2 mitigation through carbon capture and utilization

- Energy efficiency for CO₂ Capture
- Efficient BECCS

Objectives

- Improve enzyme activity and robustness
- Improve enzyme in-process longevity and post-process sustainability
- Utilize enzyme-accelerated solvents with low regeneration energy

End of Project Goal

Low energy CO_2 waste gas scrubbing technology using enzyme-accelerated solvents with low regeneration energy with aiming to enable a 20% energy reduction compared to the MEA reference case (at 90% CO2 capture)

Project Overview

- The project directly addresses the recent BETO Lab call's Topic Area 5: Novel, Biological Scrubbing Techniques for CO₂ Utilization and is also applicable to address Topic Area 3: Biological Biogas Cleanup
- Our goal is to develop a low energy CO₂ waste gas scrubbing technology using improved immobilized thermotolerant carbonic anhydrase (CA) and enzymeaccelerated solvents with low regeneration energy, selectively removing CO₂ from mixed gas streams, with reduced energy consumption and aim to enable a 20% energy reduction compared to the MEA reference case
- Enzyme-based technology offers several advantages for efficient CO₂ capture from various industrial flue gasses for reuse or sequestration:
 - Current MEA based process requires higher stripping temperature; in addition the solvent is toxic
 - CA-based CO₂ capture allows use of non-toxic solvents with reduced regeneration energy
 - However, enzymes will need to withstand harsh process conditions, high temperature, high pH, high solvent conditions and tolerance of gas and process contaminants

Approach - Management

Approach – Management

- Preliminary TEA analysis help to narrow down the key cost drivers
- Collaborate with key experts in the field
- Enzyme supply by the enzyme producer Novozymes
- Monthly meeting among the teams and quarterly report/update to BETO
- Following DOE approved Regular (Smart) milestones and GoNoGo decisions
- Publish all findings in peer reviewed journals

Approach - Technical

Background

- Fast-reacting MEA CO₂ absorption solvent requires high regeneration energy due to high heat of absorption (~84 kJ/mol)
- Alternative, more **benign and sustainable solvents** have lower heat of absorption, but react slower (e.g. 59 kJ/mol MDEA, 27 kJ/mol K₂CO₃)
- Bench-scale and pilot testing has proven carbonic anhydrase ability to accelerate CO₂ absorption in alternative solvents in both dissolvedenzyme and immobilized-enzyme forms
- Process improvements are still needed to achieve energy reduction versus benchmark MEA

Approach - Technical

Carbonic anhydrase (CA)- one of the fastest known enzymes in nature- can catalyze the CO₂ in low-energy solvent at fast rate:

- Improve CA with thermotolerant, fast CO2 absorption kinetics in selected solvents –Task 1 (NREL)
- Improve CA longevity using enzyme-entrapping polymeric structures -Task 2 (NCSU)
- Utilize alternative solvents with reduced regeneration energy to improve the process efficiency and sustainability-Task 3 (UK-CAER)

Approach - Technical

- Critical Success factors:
 - Improved thermotolerance with fast CO₂ absorption rate
 - Improved enzyme in-process longevity and post-process sustainability
 - Identified enzyme-accelerated solvents with low regeneration energy
- Challenges:
 - Solvent compatibility with thermotolerant and active enzymes
 - In-process enzyme longevity and post-process sustainability
 - High energy requirement for solvents

Process Diagram

Flexible solutions for CO₂ mitigation from waste gas

CO₂ Absorption Enhancement Demos

Both dissolved CA and immobilized CA particles (BDS) give significant CO₂ absorption enhancement in MDEA solvent

Leimbrink, Nikoleit, Spitzer, Salmon, Bucholz, Gorak, Skiborowski, *Chem Eng Journal*, 2018, 334, 1195-1205.

EU FP7 funded project

Decreasing cycle time spent at high temperature can extend CA longevity (lab and bench-scale, in aq. K₂CO₃)

Qi, Liu, House, Salmon, Ambedkar, Frimpong, Remias, Liu, *Applied Energy*, 2018, 209, 180-189.

DOE-NETL funded project (Novozymes)

Prior UK-CAER Bench Scale Demo

- Dissolved CA promoted K₂CO₃ solvent based CO₂ capture system with vacuum stripping
- CA enhanced mass transfer leads to lower energy requirement versus uncatalyzed K₂CO₃
- Improving enzyme stability could reduce replenishment rate

Relevance

- The goal of the project is to develop a novel biological, sustainable, and low energy CO₂ waste gas scrubbing technology using enzyme-accelerated solvents with low regeneration energy
- Provide **energy (and cost) saving technology** for carbon scrubbing of flue gases from power plants with CCS/CCU processes
- Low energy CO₂ scrubbing technology not only provide cost savings for fossil fuel production but also can lower the production cost for biopower:
 - BECCS combines the use of biopower has the potential to produce energy with net-negative emissions. The National Academy of Science, Engineering, and Medicine recognized that BECCS has the technical potential to provide a portion of the world's energy supply by the end of the century.
 - If commercialized further, BECCS could be a baseload electricity resource with a net-negative carbon emission profile
- Impact to fossil fuel energy industry, biopower industry, biogas industry as well as CO₂ utilization sector
- Expect to yield new IP and highly cited published work; engage more industrial partners across different sectors, from technology providers to end users, and move towards bringing the technology to commercialization
- Relevant to BETO's new initiative to develop innovations in the use of biomass, municipally-derived biosolids, and sorted municipal solid waste to improve the economic potential of biopower production and use in the United States

Future Work- Task 1 Enzyme Engineering

Objectives:

- Baseline assay top CA candidates including Novozymes CA (NZ-CA)
- Test top candidate CAs for their thermostability and combability with immobilization matrices and in selected solvents (collaboration with Tasks 2 & 3)
- Comparative structure analysis for the best known thermostable and active CAs to identify mutations combine properties for fast CO₂ absorption in relevant process conditions with selected solvents
- Novel design of CAs with best known thermostable enzyme chassis

FY19 Annual Smart milestone (9/30/2019):

Report that the New CA enzyme through diversity screening and targeted mutations with survivability meet/exceed the baseline NZ-CA enzyme under lab benchmarking conditions by 10% (Task 1).

Relevant Enzyme Engineering Experience

Enzyme structure/function studies conducted by team members

-**Fucosyl transferase** Ferridoxins Cellobiohydrolases **Tapirins Endoglucanases Fusion proteins** Acetyltransferase **Transcription regulators** Chondroitinases **Cellulose binding domains** Methyltransferases Mg membrane transporter **Protein-protein complexes** Aminotransferase **Kinases**

Establish Carbonic Anhydrase Assay

Issue: Thermal tolerance and kinetics data/values in published CA literature come from different international research groups who used different assays.

- Need to achieve data consistency and express, purify and assay the enzymes
 - **1)** Wilbur-Anderson method. Variations: temperature 0°C, 4°C, 25°C; Precise pH measurement or color change with dye
 - 2) PNPA esterase activity (spectrophotometric); not all CAs exhibit esterase activity and the levels of such activity are not correlated with CO₂ hydration activity
 - 3) Stopped-flow spectroscopy
 - 4) Analysis of O^{18} isotopes of CO_2

Reaction chamber

Wilbur-Anderson apparatus - Electrometric method allows fast kinetics measurement

Carbonic Anhydrases

- α-class CA: most studied, thermostable (T_{opt} up to 75^oC) and most active (k_{cat} up to 4400 ms⁻¹), could be monomeric, dimeric and tetrameric
- γ-class CA: most thermostable hosts (T_{opt} above 95⁰C)
- Active site formed on the interface between two protein molecules, residues from both molecules are involved

Carbonic Anhydrase Candidates Identified

Top carbonic anhydrase performers:

- Thermovibrio ammonificans (TaCA)
- Persephonella marina (PmaCA)
- Sulfurihydrogenibium yellowstonense (SspCA)
- Sulfurihydrogenibium azorense (SazCA)
- LOGACA (from thermal vent metagenome)
- Pyrococcus abyssi (PabCA)
- Pyrococcus horikoshii (PhoCA)
- Codexis DvCA-mutant

- Express, purify and assay top performers
- Comparative analysis on differences in enzymatic activity a critical step allowing us to obtain firsthand information to conduct comparative enzymatic kinetic studies with the prototype CA from Novozymes and further improve them via protein engineering

	prototype CA from Novozym	es and further improve the	em via	
Go/No-Go Decisions	protein engineering			
Name	Description	Criteria	Date	
Report that the New CA exceeds NZ-CA performance (25-30% longer survivability (hours) at process temperature while maintaining kinetic turnover).	A GO decision indicates continuing improving New CA. A NOGO decision, discontinue work on New CA and conduct further protein engineering efforts to improve NZ-CA (Task 1).	Enzyme performance exceeds NZ-CA (25-30% longer survivability (hours) at process temperature while maintaining kinetic turnover).	3/30/2020	

Project Status

- NREL's research started in FY19 Q1
 - Conducted extensive literature review
 - Identified 8 top CA candidates and the genes are synthesized to express in *E. coli*, purify and assay for a comparative study with Novozymes CA
 - Assay apparatus (Wilbur) custom-built
 - Novozymes CA received
- NDAs and MTAs in place
- Working on placing the subcontracts with NCSU and UK-CAER

Future Work - Task 2 Enzyme Immobilization

NC STATE UNIVERSITY

Wilson College of Textiles

Objectives:

- Proof of concept for biodegradable enzyme-entrapping polymeric structures (BEEPS) fabrication using NZ-CA
- Verify NZ-CA-BEEPS longevity and compatibility with selected solvents at lab benchmarking conditions
- Demonstrate NZ-CA-BEEPS scale-up feasibility and test accordingly in labscale or bench-scale CO₂ capture systems
- Proof of concept for BEEPS fabrication and performance using NREL-NewCA.
- Proof of concept for spent BEEPS-solvent biodegradability

Annual Smart milestone (12 months):

Report that BEEPS provide ≥ 50% enzyme activity versus equivalent amount of non-immobilized enzyme in short-term test lab benchmarking conditions. (Task 2)

Enzyme Immobilization Approach

Wilson College of Textiles

- Enzyme immobilization can improve enzyme efficiency, longevity and process control
 - Restrains enzyme to critical reaction zone(s) in the CO₂ scrubber
- Novel BEEPS will provide immobilization advantages while also addressing end-of-use sustainability
- Polymers to be evaluated include polysaccharides (e.g. chitosan), protein (e.g. fibroin) and potentially others

BEEPS Concept

Chitosan polymer

- Naturally derived, commercially available and biodegradable
- Desirable processing and technical performance characteristics
- Versatile fabrication of immobilized enzyme for gas-liquid contact

NC STATE UNIVERSITY

Wilson College of Textiles

packing materials

Colorimetric Method for CA Activity

Wilson College of Textiles

Allows increase sample throughput and decrease the use of reagents

Future Work-Task 3 Alternative Solvents Selection and Bench Scale Testing and Integration

Objectives:

- Select solvent for CO₂ mass transfer enhancement and baseline benchscale testing
- Verify compatibility of solvent and enzyme and baseline solvent/enzyme testing
- Bench-scale testing and optimization of solvent/enzyme with 20% reduction in regeneration energy

Annual Smart milestone (12 months):

Report on process energy consumption metric for solvent-NZCA baseline testing in bench-scale system. (Task 3).

Task 3 – Solvent/Catalyst Bench Testing

Measure physical properties of aqueous amine solvent and assess physical property changes from enzyme addition

Unique Facility - 30 L/min Small Bench Unit

• A bench-scale integrated carbon capture unit built for testing enzyme enhanced solvents

Center for Applied Energy Research

• Allow comprehensive data gathering on temperature profile along the absorber and stripper column and calculate mass transfer flux and regeneration energy consumption

Summary

- Goal: To develop a novel biological, sustainable, and low energy CO₂ waste gas scrubbing technology using enzyme-accelerated solvents with low regeneration energy.
- Technical Approaches: Identify and engineer better CAs for improved enzyme activity and process robustness; Investigate novel immobilization method with effective compatibility with solvents for improved enzyme in-process longevity and post-process sustainability; Utilize enzyme-accelerated solvents with low regeneration energy and integrated process with low energy consumption.
- **Relevance**: Provide **energy (and cost) saving technology** for carbon scrubbing of flue gases from power plants with CCS/CCU processes, BECCS, enable cheap electricity from biomass.
- Future Work: Established detailed three year research plan with milestones and research targets within the project team, NREL, NCSU and UK-CAER in enzyme engineering, enzyme immobilization, compatible solvents selection and bench scale testing and integration as well as TEA analysis with the support from Novozymes.

Acknowledgements

• Funding

- •U.S. DOE EERE Bioenergy Technology Office (BETO)
 - o HQ: Jonathan Male, Kevin Craig, Ian Rowe
 - NREL LPM and Platform Lead: Zia Abdullah, Rick Elander
- Novozymes provided in kind cost share

Project Members

• NREL:

Min Zhang Vladimir Lunin Hui Wei Michael Himmel

• NCSU

Sonja Salmon and team

• UK-CAER

Jesse Thompson and team

- Novozymes
 - Mike Elder
 - Alan House

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Wilson College of Textiles

Thank You

www.nrel.gov

min.zhang@nrel.gov

Response to Reviewers' Comments 2017

Publications

Presentations