

DOE Bioenergy Technologies Office (BETO) 2019 Project Peer Review

> WBS 2.5.1.500 Inverse Biopolymer Design Through Machine Learning and Molecular Simulation

PABP and Seps March 4-5, 2019 Michael Crowley -- Pl National Renewable Energy Laboratory

Goal Statement

Goal: Predict performance-advantaged bioproducts using Machine Learning and Molecular Simulation

- Invent new materials, possibly with properties nobody ever dreamed of ...
- Determine design principles and structure-function relationships for thermal, mechanical, and
- Leverage chemical variability in sugars, lignin, bio/catalytic intermediates

Outcome: A high-throughput method for predicting polymers for desired performance advantages

• Through prediction, identify 10 new polymer materials that are "performance-advantaged" over petro-derived materials

Relevance: Greatly increase efficiency of designing and producing PABPs, reducing cost and time-to-product.

• Work with industry to ultimately enable new bio-based materials by in-silico high-throughput screening

Flubber Flying Rubber

Industrial Relevance Example

ML and MD Predictior Needed Polymer property: Engine **Abrasion Resistance** with Tensile Strength fig_ 1 New rope fig. 2 Used rope

Quad Chart Overview

Timeline

- Start: FY2018
- Merit review cycle: FY2018-2020
- 50% complete of review cycle

	Total Costs Pre Pre FY17	FY17 Costs	FY18 Costs	Total Planned Planned Funding Funding
DDE funded funded			\$400k	\$1200k

Partners:

BETO Projects:

Performance-Advantaged Bioproducts via Selective Biological and Catalytic Conversion

Performance Advantaged Bioproducts from Catalytic Fast Pyrolysis

Tailored Polymers Through Rational Monomer Development (LANL)

Analysis in support of novel bio-based products and functional replacements

Lignin-First Biorefinery Development, Biological Conversion of Thermochemical Aqueous Thermochemical Aqueous Streams

Biological Lignin Valorization

- Agile BioFoundry
- Separations Consortium

Co-optima

טט טאנווום עחר אוגבו

HPC NREL

Nat'l labs, universities, companies:

Los Alamos National Laboratory

Barriers addressed

Ct-J Identification and Evaluation of Potential Bioproducts

Computational methods for high-throughput screening and prediction of performanceadvantaged polymers

Ct-N Multiscale computational framework accelerating technology

Models must be developed for translating material performance from molecular to industrially relevant scales.

Objective

Produce and characterize PABPs including thermoplastics and thermosets from monomers derived from computational prediction of bioderived substrates

End of Project Goal

A prediction tool for determining bio-derived polymers with performance advantages resulting in at least 10 new polymer materials with performance advantages over what is available from petro-sources.

Tool available to industry

Project Overview

History. Novel properties can be predicted through modeling and computation

- Machine Learning (Co-Optima soot precursor prediction)
- Macromolecular simulation (biopolymers, cellulose, lignin)
- Polymer properties (decrystallization, high-T transitions, mechanical properties)

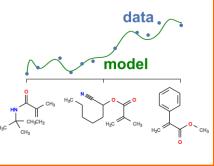
Project Goals: Prediction Engine

- Test Predictions in Experiment, understand and predict Experimental Discoveries
- Creative advantage: new bio-based intermediates, thermoplastics and thermosets

Context: Harness functionality inherent to biomass

- Industry needs new properties, bio-derived polymers have solutions
- Machine Learning and Molecular Modeling can predict polymers with desired properties, and can develop design principles → iterate with experiment

Approach


Approach - Management

Project: Inverse Polymer Design M. Crowley

Machine Learning Task Peter St. John, Nolan Wilson, Mark Nimlos

- Rules for Polymer Building from monomers
- Neural Network
- Prediction Engine for high-throughput prediction

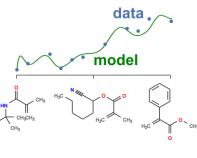
Molecular Modeling Task Brandon Knott, Graham Schmidt

Molecular dynamics Polymer Physics Calculate Properties

Management Approach – Collaboration and Meetings

- 1. Weekly Task meetings: progress, problem-solving
- 2. Bi-weekly Consortium meetings (three projects together):
 - 1. Performance-Advantaged Bioproducts via Selective Biological and Catalytic Conversion
 - 2. Performance Advantaged Bioproducts from Catalytic Fast Pyrolysis
 - 3. Analysis in support of novel bio-based products and functional replacements

3. Monthly BETO Meetings above plus


- 1. Technical Manager: Nichole Fitzgerald
- 2. Tailored Polymers Through Rational Monomer Development (LANL)

Approach - Management

Project: Inverse Polymer Design M. Crowley

Machine Learning Task Peter St. John, Nolan Wilson, Mark Nimlos

- Polymer Databases
 Dulas for Dolymer
- Rules for Polymer Building from monomers
- Neural Network
- Prediction Engine for high-throughput prediction

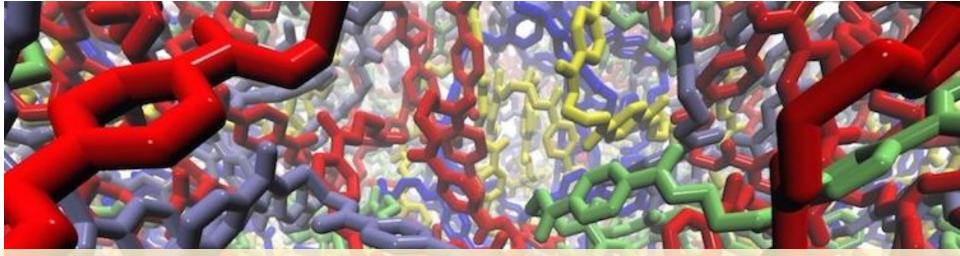
Molecular Modeling Task Brandon Knott, Graham Schmidt

Molecular dynamics

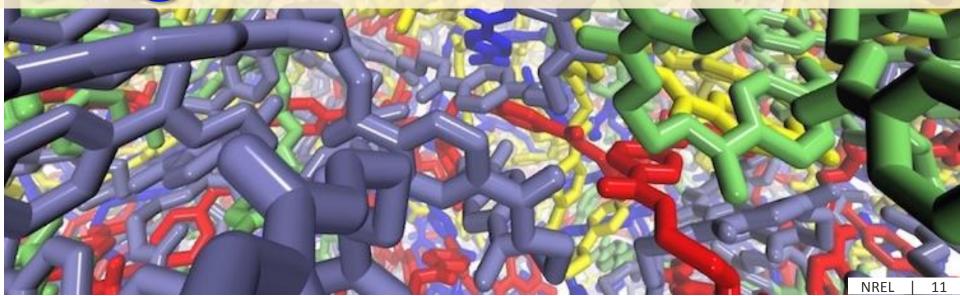
Polymer Physics

Calculate Properties

Organized by modeling type, managed by expert. Task Leads responsible for:


- Relevance to BETO and PABP
- AOP, Milestones, quarterly reporting
- Communication with other projects
- Tracking go/no-go activities
- Budget management.
- Leverage CCPC collaborations using all theory and modeling expertise across laboratories
- Go/no-go decisions to stop ineffective approaches, replace with new approaches that will deliver accurate predictions with high-throughput

Approach - Technical


- Approach: Machine-Learning and Molecular Modeling
 - Build **Polymer Database** with properties from
 - 1. Literature
 - 2. Databases
 - 3. Industrial spec sheets
 - 4. BETO experimental projects
 - Advance Neural network architectures for polymer prediction
 - Design **high-throughput molecular simulation methods** for computing new polymer properties
- Objective:
 - **Predict NEW polymers** with performance advantages
 - Gain **insight**, discover approaches and solutions, understand molecular source of properties
 - Guide and stimulate design, experiment, and engineering; select most promising directions
 - Increase research efficiency
 - concentrate experimental efforts on the systems with highest likelihood of success
 - reducing search space for properties
 - not depending solely on intuition or accident
 - Reduce screening time by orders of magnitude

Approach - Technical

Critical Success Factors	Challenges	Strategies
Machine Learning can predict properties of	Databases are small	Continue literature search for polymers and properties
many classes of polymers and deliver 10 new predicted polymers with performance	Data for many properties is sparse	As above plus supplement missing properties with simulation derived properties
advantaged properties	Incomplete polymer classes represented	Build rules for missing polymer classes
	Neural network architectures for experimental data set scales are not well developed	Continue development and testing of ML approaches
Molecular simulation can augment the properties in the databases and can	Complete design and testing of methods for numerical property determination is non-existent	Design and test for most accurate methods of property calculation, statistical mechanical approaches
predict properties of experimentally-derived monomers with unknown properties	Available Force Fields are unproven, unknown structure for amorphous and many crystalline polymers	Implement high-throughput methods for lookup-type force fields.

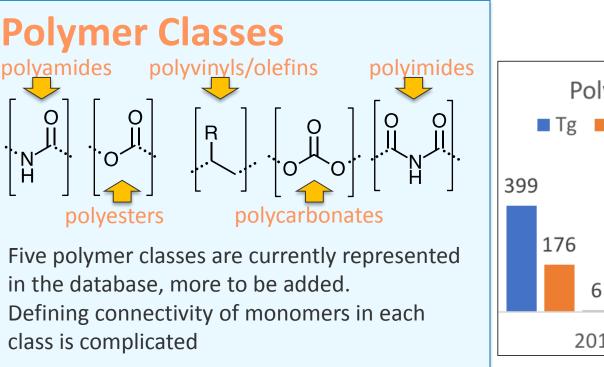
Technical Accomplishments Progress and Results

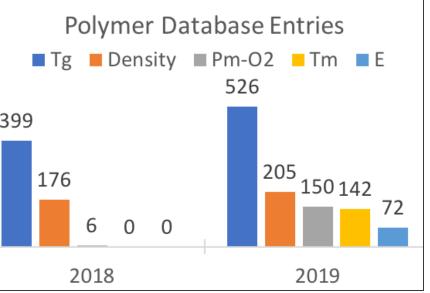
Machine Learning and Databases

State of the art before project start

- Polymer databases sparsely populated
- Databases incompatible with deep learning
- Polymer descriptors not appropriate for prediction of properties
- Databases had multiple, sometimes conflicting entries
- Neural networks needed to be developed for property prediction

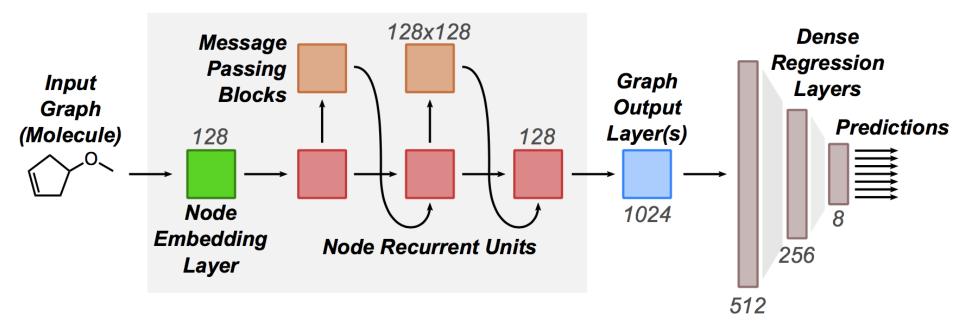
Achievements for FY18

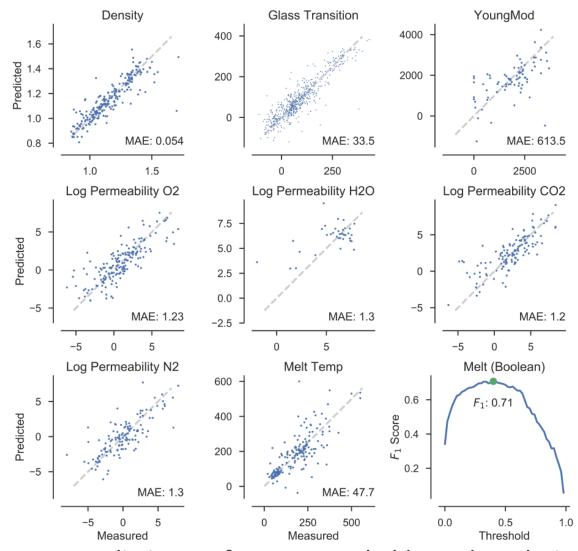

- Multiple incompatible databases merged and curated
- Database expanded from literature and experiment
- Chemical descriptors designed
- Automated rules for converting monomers to all possible polymers
- Transfer and message-passing methods developed to enhance small database sizes
- Full-scale Machine-Learning methods and software constructed and tested


Database Development

Parameter	No. of Polymers
Glass Transition	554
Density	227
Permeability: O_2 , CO_2 , N_2 , H_2O	171, 126, 128, 36
Melt Temperature + Boolean	170
Modulus	77

Database:


Starting with no cohesive database, built and expanded a functional polymer database Continued expansion

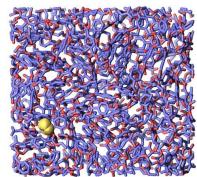

Machine Learning

 Developed machine learning model to simultaneously predict 8 polymer properties from monomer structures

Machine Learning

- Developed machine learning model to simultaneously predict 8 polymer properties from monomer structures
- Prediction
 performance is
 improved as more
 data is available

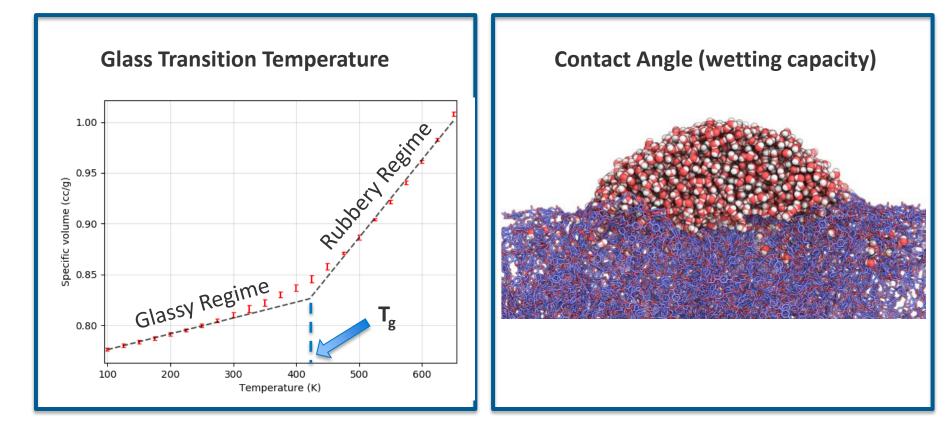
Prediction performance on held-out data during 10-fold cross-validation


Molecular Simulation—Models

State of the art before this project:

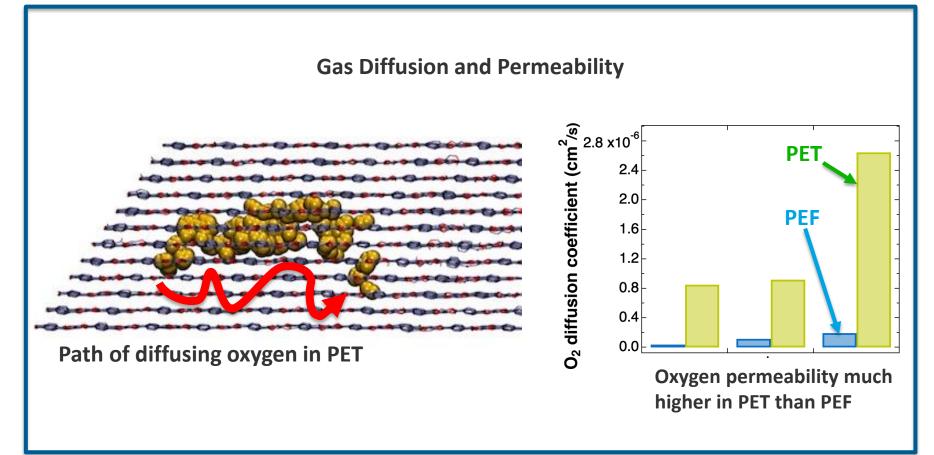
- Force fields unproven, not easily transferable
- Amorphous polymer system setup ill-defined
- Weak connection to experiment

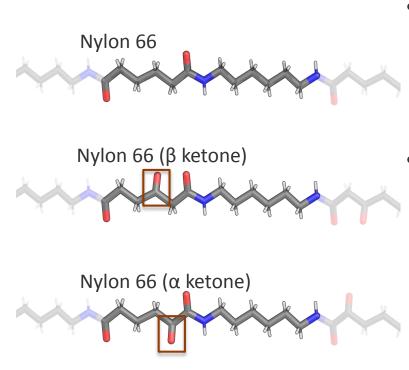
Achievements for FY18


- Force fields for PET, PEF, Nylons, and bio-inspired variants
- Structure builders (most polymers are semi-crystalline)
 - Crystalline (bulk, multiple faces)
 - Amorphous (three approaches: polymerize, random placement, melting)

Molecular Simulation—Aromatic Polyesters

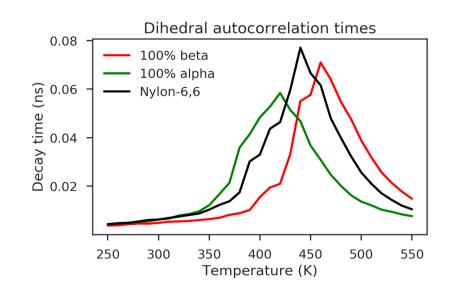
- Created model builder for amorphous and crystalline polymers
- Force Fields developed for PET, PEF
- Developed methods for calculating:


Τ _g	Density	Melting Point	
Strength Moduli	Contact Angle	Permeability	
Diffusion	Entanglement	Tortuosity	


Molecular Simulation—Aromatic Polyesters

- Created model builder for amorphous and crystalline polymers
- Force Fields developed for PET, PEF
- Developed methods for calculating:

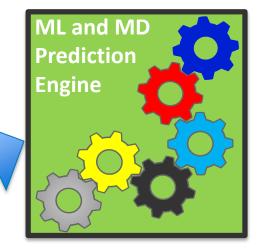
T _g	Density	Melting Point
Strength Moduli	Contact Angle	Permeability
Diffusion	Entanglement	Tortuosity



Molecular Simulation—Nylons

 Simulations reveal the enhanced thermal properties are due to increased rigidity in the polymer backbone that delays the glass transition

- Experiments indicate a significant increase in glass transition temperature of Nylon 66 when bioderived β keto adipic acid is utilized rather than adipic acid.
- MD simulations demonstrate this increase, which is not achieved in α ketone case (consistent with experiment)



Contribution to Bioeconomy and Industry:

- Provide **Prediction Tool** to Industry
- Publicly accessible Polymer Databases
- Making available high-throughput Property Calculator to augment Machine Learning
- Speed selection and design through high-throughput screening
- Design and test new polymers with higher probability of getting to market
- Targets specific needs of manufacturing (desired polymer properties)

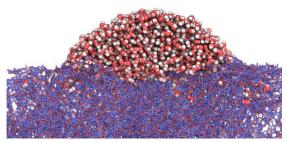
Within BETO mission:

- Research and develop high-performance biofuels, bioproducts, and biopower.
- Create **high-value performance-advantaged bioproducts** to enable more economic biorefineries.

Stakeholder Outreach and Engagement:

- Provide suggested solutions to inadequate properties based on structure-function relationships
- Speed industrial development and deployment of new biobased materials in the BioEconomy by:
 - 1. Providing polymer database and neural network for predictions
 - 2. Making available high-throughput property calculator to augment Machine Learning

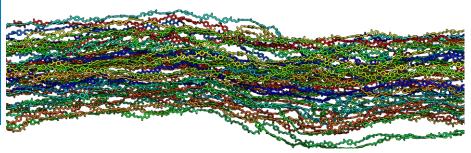
Scientific Discovery:


- **Highly Complementary with experiment:** Quickly down-selects candidates, predicts
- **Conceive and discover materials** with as yet unknown properties that are otherwise discovered through chance or extensive, time-consuming combinatorial approaches.
- Elucidates structure-function relationships for novel biobased polymers using high-throughput computational methods
- Discovers and designs biobased polymer materials with unique performance attributes (not available from other sources)
- Provide suggested solutions to inadequate properties based on structure-function relationships

Future Work

Future Work

- Expand database and rules to more classes of polymers
 Increase reliability and fidelity of predictions
- Expand database for more properties and more entries for each property
- Search for bio-derived performance-advantaged products
 - Curate database of potential biologically-derived monomers from publicly available resources (i.e. Pubchem, MetaCyc, KEGG)
 - Polymerize monomers with polymer rules, screen for valid polymers
 - Predict polymer properties using machine learning models
- Add block copolymers and branching
- Provide predictions for PABP to be tested experimentally


Future Work

- Implement High-Throughput Property Prediction
 - Fast and accurate Force Field determination
 - Refine structure prediction (amorphous and crystalline)
 - Automated building molecular systems, running simulations, analysis, and producing data for Task 1.
- *In-silico* testing of predictions from Task 1 for polymers with performance-advantaged properties
- Refine existing and add new property-calculation methods
- **Structure-function** relationships developed in conjunction with experimental tasks
- Add block copolymers and branching
- Deliver predictions for PABP to experiment for testing and make available to industry

Summary

Summary

Overview

Project designed to develop capability for

- Design of bio-based, performance-advantaged polymers
- Prediction of polymers with specific properties
- Prediction of properties of polymers from suggested monomers

Approach

Close collaboration within the PABP consortium to enhance and accelerate discovery, go from prediction to production, and from scientific understanding to design principles

Progress/Achievement

Achieved construction of Polymer Databases, Machine-Learning Prediction, Molecular Dynamics models, property calculation methods

Relevance

Relevant to the bioeconomy, speed of PABP to market, valorization of biofuels, needs of materials manufacturing, delivers both new bioproducts and tools for design and selection.

Future Work

Plans to expand databases, deliver real targets for testing, speed high-throughput screening and prediction, deliver user-friendly and accurate prediction tool

<u>Machine Learning and Databases</u> Peter St. John Nolan Wilson Mark Nimlos

<u>Molecular Simulation</u> Brandon Knott Graham Schmidt

Experimental Collaboration Nicholas Rorrer

Thank You

www.nrel.gov

Michael.Crowley@nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Publications/Presentations

Presentations

Peter St. John, Caleb Phillips, Nolan Wilson, Mark R. Nimlos, Travis W Kemper and Ross E Larsen, *End-to-End Learning for Prediction of Optoelectronic Properties of Organic Photovoltaic Polymers* AIChE 2018

Papers

Peter C. St. John, Caleb Phillips, Travis W. Kemper, A. Nolan Wilson, Michael F. Crowley, Mark R. Nimlos, Ross E. Larsen *Message-passing neural networks for high-throughput polymer screening*. Submitted to *International Conference on Machine Learning* 2019

Response to Reviewers' Comments 2017

This is the first review of this project