

DOE Bioenergy Technologies Office (BETO) 2019 Project Peer Review

Integration & Scale-Up (WBS 2.4.1.301)

March, 2019 Technology Session Area Review

David Robichaud

National Renewable Energy Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Goal Statement and Outcomes

Goal: Verify thermal and catalytic conversion technologies and operations in an integrated, pilot-scale facility.

Outcomes:

- Scaling relationships that enable predictions of product yields and composition based on fundamental process conditions.
- Engineering solutions for scaleup challenges of biomass technologies.
- Pilot scale verification data for technoeconomic analysis (TEA) and applied research projects.

Relevance: Reducing cost and risk for industry by bridging the technology valley of death.

Tangible outcome for the United States:

Enables the successful industrial adoption of biomass technologies; supporting the continued growth of the U.S. bio-economy.

Key Milestones

	Start TODAY							End												
	FY	201	8		FY	FY 2019 FY 2020		0	FY 2021			FY 2022								
KEY MILESTONE	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Capability Expansion																				
1) Commission R3 riser																				
2) Provide data for zeolite kinetic model development																				
3) Bulk H2 to PDU																				
Ex situ Catalytic Fast Pyrolysis Verification																				
1) Packed bed reactor install/commission/model																				
2) Develop FP scale-up functions to condition incoming vapor stream																				
4) GNG: eval catalyst in pilot system																				
4) Provide data for packed bed kinetic model / scale up																				
5) Preliminary Verification																				
6) Verification																				
GNG: evaluate catalyst for verification Technology Freeze																				

Project Budget Table

		Original P (Estin	roject Cost nated)	Project S and Ba	pending Final Project alance Costs		
Budget Periods		DOE Funding	Contingency	Spending to Date	Remaining Balance	What funding is needed to complete the project.	
FY19		\$1.90M	\$640k	\$470k	\$2.07M		
-	Maintenance, Upgrades, Repair	\$650k		\$320k			
-	Experiments	\$1.15M		\$150k			
-	Installations (H ₂)	\$200k				2001 200/	
FY	20	\$1.90M			Оркеер: 30%		
-	Maintenance, Upgrades, Repair	\$650k			Instal Experi	lation: 10% ments: 60%	
-	Experiments	\$1.15M			Елреп		
-	Installations (H ₂)	\$200k					
FY	21	\$1.90M				\$2M in FY22 for verification	
-	Maintenance, Upgrades, Repair	\$805k					
-	Experiments	\$1.15M					

Timeline

- Project start date: 2019
- Project end date: 2021
- Percent complete: 17%

Barriers addressed

ADO-A. Process Integration

 Integration of feedstock, conversion, and bio-oil upgrading technologies.

ADO-D. Technical Risk of Scaling

 Develop scaling factors based on pilot-and bench-scale systems.

	Total Costs FY15 - FY17	FY 18 Costs	Total Planned Funding (FY 19- Project End Date)
DOE Funded	\$6.08M	\$1.62M	\$5.7M (\$1.9M/year)
Project Cost Share*			

Objective

Develop critical resources required to reduce risk and encourage commercialization of thermal and catalytic technologies.

Partners:

ChemCatBio, FCIC, Engineering of Catalyst Scale-Up (3.2.1.1), Thermochemical Platform Analysis (2.1.0.301-302), CCPC (2.5.1.301-307) Materials & Degradation in Biomass-Derived Oils (2.4.2.301)

1- Project Overview: Project History

The TCPDU serves as a production-relevant environment to assess processing operability while generating foundational longer-term catalyst and reactor performance data

Over 20 years of pilot operations

- Recent upgrades improved mass balances, reduction in operational downtime/maintenance, enhanced safety
- New capability: R-cubed riser system
- Designed to be functionally flexible

Multiple industry partnerships

Petrobras, DOW

Various thermochemical technologies

- Pyrolysis
- Catalytic fast pyrolysis
- Gasification

Utilized to meet BETO verification targets

- Mixed alcohols (2012)
- Fast pyrolysis + hydrotreating (2017)
- Catalytic fast pyrolysis (2022)

2 – Technical Approach: Ex-Situ Catalytic Fast Pyrolysis

VS

days

months

2 – Technical Approach: Ex-Situ Catalytic Fast Pyrolysis

2 – Approach (Management)

Safety

Qualified/certified

- Electrical/chemical
- Rigging and hoisting
- First aid

Hazardous response team Management of change

- Every change = hazard analysis
- Periodic systems PHA/RV
- Regular review of procedures and P&IDs

Dedicated POC for safety

Operations

- Analytical
- Feedstock/catalyst logistics
- Equipment calibration/recertification
- Product storage

Engineers:

- Control
- Mechanical
- Chemical

POCs building engineer/facilities

2 – Approach (Management)

Active project management:

- Interaction and coordination across multiple R&D projects (e.g. consortia), other national labs, building coordinators, safety
- Constant communication
- Logistics of material and technology transfers defined in advance and checked often.

Example: FY2017 verification Role: provide 100 gallons bio-oil Pre-verification run

This management approach allowed us to successfully deliver ahead of schedule

ultiple R&D • Allows team to focus on the task at hand while leaving

task at hand while leaving longer-term concerns to leadership

Task structure:

1. General maintenance

SCRUM – Agile method

- 2. Installation and commissioning
- 3. Generating experimental data

Milestones are used to:

- 1. Monitor progress in installation/commissioning of unit operations
- Denote progress toward interproject objectives (modeling, catalyst, feedstock).

4 – Relevance (BETO)

The strategic goal of Advanced Development and Optimization (ADO) program area is to develop and de-risk bioenergy production technologies through verified proof of performance in engineering-scale systems and relevant environments and identify innovative end uses. – BETO MYP

The Integration and Scale-Up Project, via the TCPDU, is a key vehicle for this proof of performance.

4 – Relevance (BETO) – Bridging the "Valley of Death"

- Connects R&D projects with industry-relevant scales
 - Integration of technologies
 - Verifications

- Scaling relationships
 - Critical attributes
 - Provided back to FCIC/ChemCatBio
 - Connection with modeling (CCPC)
 - Intersection of empirical relation and modeling
 - First principles foundation scaling relationship that are applicable beyond the systems at NREL

"Valley of Death" IEEE Security & Privacy Magazine, Vol. 11, No. 2, March-April 2013, pp. 14-23

4 – Relevance (industry)

- Pilot plants are expensive to build, maintain, and operate
- Provides industry with access to a variety well-instrumented research reactors
- Industrial partners can connect equipment to test proprietary technologies.
 Insert skid-mounted operations
- Leverage our knowledge of biomass technologies (critical materials attributes)
- Examples:
 - Coprocessing petroleum/CFP oils in Rcubed riser system
 - Evaluation of waste-to-energy feedstocks (i.e. plastics, nut shells/hulls waste, or poultry litter)

5 – Future Work: FY2022 Verification

Using inputs from ChemCatBio, Feedstock Conversion and Interface Consortium, Consortium for Computational Physics & Chemistry modify the TCPDU to collect pilot-scale verification data on catalytic fast pyrolysis

5 – Future Work: Pyrolysis Vapor Consistency Across Scales

Matching pyrolysis vapor quality across scales is critical for downstream catalyst performance

- Same feedstock
 - Sourced from INL, delivered in FY20
- large differences in operations
 - reactor type, flow conditions, preparation (particle sizes)
- Past efforts focused on empiricalbased relations
- Incorporating a first-principles foundation (CCPC)
- Integration and Scale Up role:
 - ID Critical material attributes (FCIC)
 - \circ Validation of models at pilot scale

Semi-empirical scaling relation between TCPDU pyrolyzer and bench-scale 2FBR pyrolyzer on clean pine in 2017.

A first-principles relation based on critical material attributes makes scaling relations applicable beyond NREL reactors.

Collaborating partners

5- Future Work: New Capability to Facilitate Catalyst Scale-Up

5 – Future Work: Capability Expansion and Installations

	Verification catalyst (Pt/TiO ₂)									
	Hydrogen	Attrition	Alkali							
•	Bulk H ₂ gas pad o 85% H ₂ (~1 atm) o ~200 slm	 Packed bed reactor 1 on (upgrading), 2 off (regen) setup 	 Hot Gas Filter Design based on DCR system 							
•	 Logistics (~ 2 years) Safety (PHA/RV) Building codes Building engineers Control systems 	 1 year Install/Comm. PHA/RV Control Analytical 	 3 months Install Commission PHA/RV Control systems Analytical 							
•	 Contingency Tube trailer/hot cylinder swaps 	 Fully modeled by CCPC Parametric sweeps of operating conditions Minimize scaling-loss 								

5 – Future Work: Go – No Go

Description

Measurable Success Criteria

Decision Point

Confirm ability to produce sufficient catalyst for verification

Bench-scale assessment engineering-scale catalyst performance is consistent with SOT

Assessment of TCPDU modifications to meet consistency with bench SOT

Evaluate the performance of the verification catalyst synthesized using large-scale methods

GO

Finish design and installation of equipment for verification

NO GO Re-evaluate catalyst/ reactor design or Complete redesign/build of fixed bed system

Approach

- Dedicated team provides smooth safety and operational oversight of pilot facility
- Active management style ensures successful completion of DOE objectives

Relevance

- Primary component of DOE's verification of technology objective
- Research into scaling relations provide bridge for the 'valley of death' for R&D projects
- Industry access to pilot facilities

Future work

- Installation and commissioning of new capabilities to meet the 2022 verification
- Developing scaling relations for pyrolysis and vapor phase upgrading at are generally applicable
- Go/No Go decision point to make sure catalyst can be produced at scale and consistent with lab-synthesized materials

Acknowledgements

Thermochemical Process R&D Section:

- o Kristin Smith
- Tim Dunning
- Katie Gaston
- Chris Golubieski
- o Ray Hansen
- Matt Oliver
- Marc Pomeroy
- Daniel Carpenter
- Rebecca Jackson
- Many collaborators

Thank You!

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Response to 2017 Reviewer comments

Response

The positive feedback is appreciated. We have continued practicing the highlighted approaches including: (1) continuing to employ and adapt project management approaches, (2) maintaining a common and flexible pilot plant with an experienced crew, and (3) developing and deploying innovative solutions.

We have taken into consideration the concern regarding fluid bed versus entrained flow reactors and the consistency thereof. Based on experimental results, the TCPDU entrained flow reactor performs comparably to the benchscale systems (e.g. yields). Furthermore, we have an ongoing effort with the Consortium for Computational Physics and Chemistry to model both systems that can shed more light onto the differences of the two systems and what we can do to minimize those issues. From a research perspective, the entrained flow reactor offers advantages that the fluid beds cannot. Such as, independent control of the residence times. Finally, we continue to monitor the needs of potential industry collaborators. As the TCPDU is designed to be a flexible facility, we are willing to install a fluid bed system if it is deemed to meet our obligations to either BETO or potential industry partners assuming capital funds are provided for the effort.

We have initiated a directed effort based on Energy I-corps to facilitate reaching out to industry, gaining an understanding of the challenges they face, and aligning our R&D and capabilities to meet their needs. This effort is ongoing and engagement is a primary effort going forward.

Three comment areas and associated responses on highlighted on this slide. Other comments and our responses can be found in the 2017 Project Peer Review of the U.S. Department of Energy Bioenergy Technologies Office final report available at www.energy.gov/eere/bioenergy/downloads/2017-project-peer-review-report (pp. 279)

Risk Registry Table - 1

		Risk Identified		Mitigation Strateg	Current Status	
Risk ID	Process Step	Risk Description	Severity (High/ Med/ Low)	Mitigation Response	Planned Action Date	Active/ Closed
Feed H	landling					
1		Processed feed bridging in hopper	Med	Pelletization. FCIC working to determine critical material attributes. 100's of kg material run prior to FY22 verification		Active
Conver	rsion					
2		EFR performs differently than bench FBR	Low	Build scaling relationships and operational maps linking bench and pilot unit outputs	9/31/19	Active
Solids	separation					
3		Hot gas filter cannot be modified to fit in TCPDU	Med	Learnings from previous TCPDU runs as well as bench- scale systems will inform modification and install.	12/31/19	Active
4		Char solids bridge in cyclones or collection	Med	FCIC working to determine critical material attributes. 100's of kg material run prior to FY22 verification		

Risk Registry Table -2

		Risk Identified		Mitigation Strateg	Current Status			
Risk ID	Process Step	Risk Description	Severity (High/ Med/ Low)	Mitigation Response	Planned Action Date	Active/ Closed		
Vapor Phase Upgrading – Fixed Bed Unit								
5		Kinetic models for catalytic reactions cannot be achieved	High	Bench-scale experiments and kinetic/de-activation models verified prior to pilot-scale designs. Kinetic/de-activation model for zeolite catalysts in a riser reactor to demonstrate the method.	9/30/20	Active		
6		Fixed bed catalyst cannot be sourced	Low	Utilize Engineering of Catalyst Scale-up task to produce catalyst on site. Alternatively, leverage existing JM CRADA.				
7		Pilot-scale catalyst performs differently than bench-scale catalyst	Med	Build scaling relationships and operational maps linking bench and pilot unit outputs using analysis as well as hydrotreating performance.				

		Risk Identified		Mitigation Strateg	Current Status		
Risk ID	Process Step	Risk Description	Severity (High/ Med/ Low)	Mitigation Response	Planned Action Date	Active/ Closed	
General							
8		Bulk H2 cannot be permanently installed to TCPDU	Med	Plans for install began in 2016. Temporary bulk H2 plan could be implemented in 2022 for verification	5/30/19	Active	
9		Inconsistent Data Management	Med	The TCPDU team and CCPC/FCIC have an established relationship and record of collaborations and data sharing.	12/31/18	Closed	