

SETO CSP Program Summit 2019

Supercritical Treatment Technology for Water Purification

DE-EE0008394

Dr. Michael Mann, Executive Director
Institute for Energy Studies at the University of North Dakota

Project Sponsors

- U.S. Department of Energy
 - Office of Energy Efficiency and Renewable Energy
 - Technology Manager: Mark Lausten
- University of North Dakota
- Envergex LLC
- Doosan Heavy Industries
- Creedence Energy Services

Background

- Oil and gas flowback and produced water (FP) is estimated from 0.5 3.8 million gallons per well
 - 90+% of FP water is derived from naturally occurring formation brines. FP contains 50,000 to 300,000 mg/L and organics \sim 2,000 mg/L
 - Over 1.1 million active oil and gas wells in the US
- Deep well injection is most common method of FP disposal
- Recycling of FP water for fracking is limited
- RO and evaporative method are inadequate for treating high TDS brine
- Supercritical Water (SCW) treatment can handle the very high TDS brine. We proposed an enhanced SCW technology Supercritical Water Extraction – Enhanced Targeted Recovery (SWEETR™)

Approach

- Separate saltwater into a pure water stream and recover valuable solids while destroying organics producing zero liquid discharge (ZLD)
 - Reducing overall energy penalty for SCW desalination and reduce scaling on equipment
 - Develop modular technology and combine with reverse osmosis
 (RO) to improve economics
 - Utilize solar energy as method of added heat

Project Goals

- Evaluate the feasibility of using SWEETR™ for desalination of hypersaline brine
- Determine the effectiveness of our novel additives to reduce energy requirement for supercritical desalination, reduce corrosion and fouling of heating exchanger surfaces, and allow separation and recovery of solids
- ldentify ways of integrating SWEETR™ with commercial technologies like reverse osmosis
- Evaluate the application of using solar thermal energy for a modular SWEETR™ system
- Scale-up and demonstrate the feasibility of achieving ZLD using SWEETR™ technology from hypersaline solutions

Preliminary Results

Water treated to only the quality required for input to RO system reduces overall system cost

Catalyzed destruction of organics with additives: 90+% destruction targeted

Impact

- Oil and gas industry: desalination of produced waters
 - Cost and environmental impact: mitigates cost of disposal (i.e. deep well injection) and costs of clean water acquisition.
 - Good first entry point due to higher margins.
- Seawater Desalination: Reverse osmosis
 - This technology would treat effluent recycling to the RO unit, resulting in ZLD
- Levelized cost of water treatment (LCOW) target of \$1.50/m³ for a small modular system

Contact Information

University of North Dakota
Dr. Michael Mann

Phone: 701-777-3852

michael.mann@und.edu

Envergex LLC

Dr. Srivats Srinivasachar

Landline: (+1) 508 347-2933; Mobile: 508 479-3784

srivats.srinivasachar@envergex.com