Low-Cost Dispatchable Heat for Small-Scale Solar-Thermal Desalination Systems

SETO SUMMIT 2019 March 18,19, 2019

Contents

- Team
- Objectives
- Risks & Challenges
- Milestone Update
- Next Steps
- Spend Plan

Team – UC Merced

Roland Winston
Principal Investigator
Professor
Nonimaging solar optics

James PalkoAsst. Professor
Thermal Energy Storage

Gerardo Diaz Professor Heat Transfer

Souvik RoyPhD Student
Thermal Energy Storage

Lun JiangProject Scientist
ICPC Manufacturing

Muhammad ShattiquePhD Student
Thermal Energy Storage

Bennett Widyolar
Post-Doctoral Researcher
ICPC & Integrated System
Design

Jordyn Brinkley
PhD Student
ICPC Design, Simulation

Solar Desalination Program

Topic Area	Description	Metric	UC Merced
2. Low-cost solar thermal heat - small scale TOPIC AREA 2: Low-cost solar thermal heat	1. Levelized cost of heat (LCOH)	< \$0.015	\$0.015
	2. Temperature of delivered heat	120 °C	120 °C
	3. Mobility	Transport to multiple locations	Transport to multiple locations
	4. System Lifetime	> 25 years	25 years

Based on our modelling and system design to date, we expect our ICPC + TES solar system will meet the FOA targets.

Project Objectives

Develop, prototype, test

- Low-cost non-tracking solar thermal collector with ≥64% solar-to-thermal efficiency @ 150 °C
- Low-cost phase change thermal energy storage (TES) with ≥ 120 °C extracted heat

Demonstrate at pilot scale

 Integrated (solar thermal + TES) system on track to provide LCOH < \$0.015

Budget period 1: Bench-scale ICPC & TES performance testing Budget period 2: Integrated 20 kW $_{\rm th}$ ICPC solar array + 90 kW $_{\rm th}$ TES storage

Internal Compound Parabolic Concentrator (ICPC)

Thermal Energy Storage (TES)

Optical Simulation

76% optical efficiency @ normal incidence

Thermal Simulation

$$\eta_{thermal} = \rho au lpha - rac{\epsilon \sigma (T_{abs}^4 - T_{amb}^4)}{C_x G}$$
 η_0 radiative loss

$$C_x = \frac{A_{aperture}}{A_{absorber}} = 1$$

Simulation Parameters

- $\eta_o = 76\%$
- $\epsilon = 0.08$
- $T_{amb} = 37 \, ^{\circ}C$
- $G = 1000 W/m^2$

ICPC Tube Design

Tube Performance		
Optical Efficiency	75%	
Thermal Efficiency (150 °C)	64%	
Aperture Length	1.8 m	
Aperture Width	66 mm	
Aperture Area per tube	0.12 m ²	
Gross Length	2 m	
Gross Width	90 mm	
Gross Area per tube	0.18 m ²	
Output per tube	61 watts	

Combined Heat and Power project

Our tube expert, Dr. Lun Jiang we hire them young

Media candidate 2: Encapsulated polymer

- Stabilized encapsulated thermoplastic storage media synthesized
- High density polyethylene phase change material (PCM)
- Encapsulated in thin thermoset (epoxy) polymer shell
- Encapsulant contains polymer on melting

bulk encapsulated media

Encapsulant structure

- Minimizing encapsulant thickness is important to:
 - Reduce cost
 - Maximize effective latent heat
- Approach for minimizing encapsulant thickness
 - Minimize uncured encapsulant viscosity
 - Maximize resin coating uniformity before introduction of hardener

encapsulant roll coating

Ex. 75 µm coating, 5 mm bead: 10% volume encapsulant

Latent heat of HDPE PCM

- Latent heat of PCM measured via differential scanning calorimetry
- Latent heat on melting of ~135 J/g for fresh material
- Melting/solidification hysteresis ~9 °C at 1 °C/min
 - Much faster than operational cycle

Selected Site Location @ UCM

Questions

Roland Winston

rwinston@ucmerced.edu

Lun Jiang

ljiang2@ucmerced.edu

Metal-Glass Seal

Path #1 – Low Melting Point Glass (LMPG)

- Thermal mismatch is a challenge
- No need to form glass flange
- Low cost LMPG sealant
- Low cost aluminum cap

Path #2 – Lead-based sealant

- Thermal mismatch is not a challenge
- Need to form glass flange
- Medium cost sealant
- Low cost aluminum cap

Metal-Glass Seal

Path #1 – Low Melting Point Glass (LMPG) Glass Tube Aluminum cap Invention disclosure filed, patent filing pending Filled with Low Melting Point Glasss Powder

Path #2 – Lead-based sealant

- Preliminary trial with aluminum cap using lead as the seal material is successful
- Potential pathway for prototype tubes

Al-Al solder (300 °C)

1) Parts

28%

4) 280 °C Joint

2) Flux Applied

4) 300 °C Joint

21

Media candidate 1: Absorbed nitrate

Stabilized NaNO₃/perlite composite storage media synthesized

Molten Sodium Nitrate

Expanded Perlite

Nitrate/Expanded Perlite composite phase change material

Expanded Vermiculite can also be used as absorbent

- Absorption of molten nitrate in porous ceramic allows stabilization
- <u>Disadvantages</u>
 - <u>Hygroscopic</u>
 - Reactive with organics
 - Requires additional robust encapsulation

Bulk calorimetry and heat transfer characterization

Task 3 – Preliminary System Design & Validation Location Data (Mosolar Irradiance)

- M3.3 3rd party TEA reviewers
 - Due 4/1/2019 33% complete
- Current accomplishments:
 - Preliminary system design developed
 - Pressure drop & heat loss models developed
 - Installation, operations, maintenance, failure modes identified
 - System location identified @ UCM
 - 3 third-party TEA reviewers identified

Location Data (Merced, CA)		
Solar Irradiance	800 W/m ²	
Global Horizontal	5.14 kWh/m ²	
Direct Normal (beam)	5.65 kWh/m ²	
Diffuse Horizontal	1.62 kWh/m ²	
Annual Average Daily Solar	5.86 kWh/m ²	
Latitude	37 °N	

Tube Performance	
Optical Efficiency	75%
Thermal Efficiency @ 150 C	65%
Aperture Length	1.8 m
Aperture Width	66 mm
Aperture Area per tube	0.12 m ²
Gross Length	2 m
Gross Width	90 mm
Gross Area per tube	0.18 m^2
Output per tube	61 Watts

Array Performance	
Design Point	24 kW _{th}
Required Aperture Area	47.5 m ²
# of tubes	400 tubes
# of banks	4 banks
Array Width	10 m
Array Length	²⁴ 13 m