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Assessment of Cathodic Protection Effectiveness
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Potential Monitoring for Corrosion Mechanism in MgCl,-KCl using Mg

. Corrosion mitigation is thermodynamic and can be monitored
looking at sample potential versus a reference electrode

. SRNL used thermodynamic modeling to determine the
equilibrium potentials for elements in the system

. The equilibrium potential for Cr oxidation/reduction is near
-0.5 V vs. Ag/AgCl in molten chlorides at 850 °C

. Mg has an equilibrium potential of -1.5 V vs. Ag/AgCl and can
prevent oxidation of Cr

. Haynes 230 samples in salt with no Mg had potentials that were
above -0.5 V for extended periods of time and these samples
showed typical corrosion levels

. Haynes 230 samples in salt with Mg had potentials well below -
0.5 V for the entire experimental period and these samples
showed no statistically significant weight change

. System electrochemical potential increased with operating
temperature, which demonstrates that high temperature
conditions have the ability to cause more corrosion

. Using reference electrodes can be used for control of redox
agents
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Introduction: Corrosion Mechanism in MgCl,-KCI (Previous SRNL SunShot Project)
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Task 1.0: Exchange of Samples and Data with Project Cohorts - Comparison Between National Labs
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« EDX mapping of cross-section confirms formation of Zr coating on Haynes 230
« Affected zone composed of Cr/W-rich region near bulk and Ni/Zr-rich regions closer to edge
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Subtask 2.1.2: Self-Healing Coatings as Corrosion Inhibitors — H230-G3-SRC-Zr4 Ni/Zr-rich Region

EDX analysis indicates presence of N|Zr and N|Zr2 phases
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Subtask 2.1.3: Design and Test a Getter Bed for a Thermosiphon Reactor in Collaboration with ORNL
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ORNL provided drawing of old and new natural
convection flow loop designs
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SRNL provided a corrosion control solution in redesigned ORNL loop
Potential install location in red

New flow loop design should be comparable to old design = compare old data
with corrosion inhibited

Two options have been designed
Zr getter rod
Electrolysis rod apparatus

Zr rod will reduce corrosion by
1) Galvanic protection

*  Zrrod more anodic than piping = corrode first if in electrical contact with loop
*  Zrin salt may coat pipe—> galvanic buffer if rod withdrawn
2) Redox control
> Zr%>ZrCl,>ZrCl;>ZrCl, occur prior to Cr oxidation = buffer against Cro>Cr23*
Mg Electrolysis (in situ)
1) Galvanic protection
. Galvanic protection capability, can coat some walls if below melting point
. Mg? is soluble (small) in the salt = buffer. May also present some galvanic protection
2) Redox control
* MgP>Mg? will prevent Cro>Cr?3+
. Mg? is soluble (small) in the salt, and this solubility will act as a buffer.

3) Oxide sink: MgO = most stable oxide in system




Subtask 2.1.3: Design and Test a Getter Bed for a Thermosiphon Reactor in Collaboration with ORNL

Collar clamp to

top of rod to ensure proper Schematic of Zr gettering assembly with
establish electrical depth of Zr rod rod when inserted and withdrawn
connection Zr getter rod withdrawn Zr getter rod inserted

Air-exposed
vacuum or
inert cover

Gas inlet and outlet
connection for purging

_ ] Inert cover
Pipe thread connections

before lowering Zr rod __(tightened or welded) Inert cover
Vacuum or
inert cover Inert Inert
No purge purge in —> purge out
needed

Surge tank

attachment point
Ball valves

open

Ball valves
closed

] Vacuum or inert cover Inert cover
Zr inserted to
depth of 10 cm
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Subtask 2.1.3: Design and Test a Getter Bed for a Thermosiphon Reactor in Collaboration with ORNL

Electrode assembly Electrode assembly
withdrawn Electrode assembly inserted and polarized
Enlarged view of ins¢ ‘ted
electrode assembly

Air-exposed
vacuum or

) Inert cover Inert cover
inert cover
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No purge Vacuum or Inert Inert
needed inert cover  purge in Inert  burge in Inert
- purge
pure and Cl,
out

Ball valves
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