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Introduction to the Team
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Role Team Members 

PI / Management • Sandia National Labs (PI, PMP, financial, facilities)

R&D / 

Engineering

• Sandia National Laboratories

• Georgia Institute of Technology

• King Saud University

• German Aerospace Center

• CSIRO

• U. Adelaide

• Australian National University

• CNRS-PROMES

Integrators / 

EPC

• EPRI

• Bridgers & Paxton / Bohannan Huston

• INITEC Energia

CSP Developers
• SolarDynamics

• SolarReserve (Bruce Kelly)

Component 

Developers / 

Industry

• Carbo Ceramics

• Solex Thermal Science

• Vacuum Process Engineering

• FLSmidth

• Materials Handling Equipment

• Allied Mineral Products

• Matrix PDM

Utility • Saudi Electricity Company
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Overview

 Objectives and Value Proposition

 Key Technical Risks (Phases 1 and 2)

 Key Technical Risks (Phase 3)

 Conclusions
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High Temperature Falling Particle Receiver
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Falling particle receiver 

Particle elevator 

Particle hot storage 

tank 

Particle cold storage 

tank 

Particle-to-working-fluid 

heat exchanger 

Goal:  Achieve higher temperatures, higher 

efficiencies, and lower costs
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G3P3 Objectives

 De-risk, design, construct, and operate a multi-MWt particle 
receiver system
 Heat working fluid (e.g., sCO2 or air) to ≥ 700 C 

 6 hours of energy storage

 > 2,000 hours of on-sun operation

 Meet SunShot cost and performance goals 

 Leverage international expertise and CSP activity

 Accelerate commercialization of G3P3 technology

5

18 months

FY19 – FY20

6 months

FY20

3 years

FY21 – FY23
DOE 

downselection
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Advantages of
Value Proposition

 Wider temperature range than molten salts (subzero to >1000 ˚C)
 Enables more efficient power cycles

 No freezing or decomposition; avoids costly heat tracing

 Use of inert, non-corrosive, inexpensive materials

 Direct heating of particles vs. indirect heating of tubes
 Higher solar fluxes for increased receiver efficiency

 Can control particle outlet temperatures instantaneously; no thermal inertia 
from tubes and headers

 Direct storage of hot particles
 Reduced costs without extra heat

exchangers and separate storage
media

6
CARBO ceramic particles (“proppants”)

particle Power™
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Component Risks and Features

 Particles

 Receiver and Feed Bin

 Particle Storage

 Particle Heat Exchanger

 Particle Lift and Conveyance

 Balance of System

8
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Particles

 Cost
 ≤ $1/kg

 Durability
 Low wear/attrition

 Optical properties
 High solar absorptance

 Flowability, low erosion

 Inhalation hazards (e.g., silica, 
PM2.5)

9
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Receiver

 Thermal efficiency
 Minimize convective/radiative 

heat loss

 Particle mass flow control
 Maintain particle outlet 

temperature

 Damage/overheating of 
refractory receiver walls

 Particle emissions
 Inhalation or pollution hazard

10
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Particle Receiver Designs

Free-Falling (SNL) Obstructed Flow 

(KSU, GT)

Fluidized Bed 

(CNRS/PROMES)

Centrifugal (DLR)

Mitigate risks 

associated with 

thermal efficiency, 

cost, and capacity
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Receiver Innovations
Multistage Release

 Increases particle 
curtain opacity
 Mitigates 

dispersion with 
longer drop 
distances

 Reduces particle 
loss and impact of 
wind

 Scalable to 
commercial 
systems 10 – 100 
MWe

12

Staged FallingFree Falling

From Jin-Soo Kim (CSIRO)

Patent Pending
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Receiver Innovations
Automated Particle Mass Flow and Temperature Control

13

Automated Particle Flow and Temperature Control

Mitigate risk of 

variable DNI on 

particle outlet 

temperature

Patent Pending

 𝑄 =  𝑚𝑐𝑝∆𝑇
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Receiver Innovations
Automated Particle Mass Flow and Temperature Control

14
Multiple Slide Gates

Slide gates can be 

“numbered up” to 

scale to larger 

systems

Mitigate risk of 

non-uniform and 

transient 

irradiance on 

heating of 

particles

Patent Pending
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Storage System

 Minimize heat loss during storage, 
charging, and discharging
 Robust, cost-effective insulation

 Minimize abrasion on interior of 
storage bin at temperature
 Abrasion-resistant materials

 Low-cost materials

 Minimize thermomechanical stresses
 Ability to vertically stack at larger scales

15
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Particle-to-sCO2 Heat Exchanger
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 Heat transfer from particles to 
high-pressure working fluid
 Shell-and-plate design

 Fluidization (G. Jackson)?

 Thermomechanical stresses / 
fatigue

 Erosion

 Cost

 100 kWt prototype
 Sandia, Solex and VPE have 

developed a moving packed-bed heat 
exchanger design for particle-to-sCO2

heat transfer www.solexthermal.com
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Particle-to-sCO2 Heat Exchanger
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Balance of System

 System instrumentation and controls
 Diagnostics

 Bypass valves for startup/shutdown

 Isolation valves for maintenance and 
emergency shutdown

 Particle mass flow monitoring

 Particle level sensing

 Duct work
 Differential thermal expansion

 No need for hermetic seals

18
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Gen 3 Particle Pilot Plant (G3P3)
Integrated System

20

National Solar Thermal Test Facility (NSTTF), Albuquerque, NM
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Gen 3 Particle Pilot Plant (G3P3)
Integrated System

21

G3P3-USA system next to the 
existing 200-ft tower at the NSTTF
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Phase 3 Risks to be Retired

 Continuous operation of fully integrated thermal system (up to 10 
hours per day)

 Start-up requirements and ramp times with diurnal cycling

 10 hours of deferred storage with ability to produce 6 MWh of 
energy using sCO2 at desired turbine inlet temperature of ≥700 C 

 Transient procedures to maintain desired particle-receiver outlet 
temperatures and sCO2 turbine inlet temperature

 Acceptable levels of particle attrition and loss during long-term 
operation that meet OSHA and EPA standards and cost metrics

 Sufficient heat transfer coefficient and manufacturing technique 
capable of achieving heat exchanger cost targets

22
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Construction Challenges

 Timeline (many vendors and novel components coming together in 
one system)

 Construction sequencing to install components (storage bins, heat 
exchanger) during the construction process or build in place

 Assembly or construction of the storage tanks on the tower support 
structure
 Use of pre-cast refractory sections?  Sprayed on site?

 Meeting $25M budget allowance
 Preliminary cost estimates and quotes are tight

23
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Things we have already demonstrated

 Ability to continuously operate and recirculate particles through Sandia’s 
falling particle receiver system during hundreds of hours of on-sun tests

 Reliable high-temperature particle conveyance (commercially available)

 Reliable and accurate particle flow control 

 High temperature particle valves (isolation and diverter)

 Accurate measurement of particle mass flow rate

 Storage and hopper design for particle inventories ~1000 kg

 Ability to heat particles to ~800 C with fluxes up to 1500 suns

 Ability to achieve receiver thermal efficiencies > 80%

 Excellent durability of particles; no significant wear on equipment

 Good flowability through shell-and-plate heat exchanger with anticipated 
particle-side heat transfer coefficient > 200 W/m2-K

24
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Overview

 Objectives and Value Proposition

 G3P3 System Overview

 Gaps and Risks

 Conclusions
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Sandia Proprietary – Do Not Disseminate
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Gen 3 Particle Pilot Plant (G3P3)

 Significant advantages 
 Direct heating of particles

 Wide temperature range (sub-zero to 
>1000 C)

 Inexpensive, durable, non-corrosive, inert

 Demonstrated ability to achieve >700 C 
on-sun with hundreds of hours of 
operation

 Technical risks
 Transient operation of fully integrated 

system

 Heat loss and efficiencies (receiver, 
storage, heat exchanger, lift)

 Particle-to-working-fluid heat transfer

 Thermomechanical stresses in heat 
exchanger and storage tanks

 Particle attrition and wear; dust formation
26

On-sun testing of the falling particle receiver 

at Sandia National Laboratories
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Questions?
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Cliff Ho, (505) 844-2384, ckho@sandia.gov

 

mailto:ckho@sandia.gov


BACKUP SLIDES
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Receiver Innovations
Aperture Covers / Wind Diverters

DLR

 Quartz glass transmits solar 
radiation but creates a barrier 
to thermal radiation loss, wind, 
and convection loss

 Soiling of glass windows and 
reflective losses are challenges
 Use quartz half-shells with spacing

 Integrate with air curtain to 
reduce soiling

Mitigate risks of 

radiative/convective heat 

losses and particle losses 

while reducing reflective 

losses and soiling

Patent Pending



1697-1503

Particle Lift

 Low particle abrasion and attrition

 High efficiency

 Insulation for minimal heat loss

 Sufficient flow capacity and control

30Repole and Jeter (2016)
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Economics of Commercial Scale System

31

SAM Modeling of LCOE for 100 MWe Particle Power Tower

Particle receiver and storage costs from [15] were used except 

where noted.  All other costs assume SunShot targets.
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G3P3-USA

32

Day 80, 12 pm Day 80, 3 pm

0.81 MW

0.80 MW

0.84 MW

0.82 MW

G3P3-USA system next to the 
existing 200-ft tower at the NSTTF
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Particle Emissions & Dispersion Modeling
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Properties of Alternative Particles
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Material Composition

Properties

Advantage Dis-advantageDensity

(kg/m3)

Specific Heat 

(J/kg-K)

Silica sand SiO2 2,610 1,000

Stable, 

abundant, 

low cost

Low solar 

absorptivity and 

conductivity; 

inhalation risk

Alumina Al2O3 3,960 1,200 Stable Low absorptivity

Coal ash
SiO2, Al2O3, + 

minerals
2,100

720 at 

ambient 

temperature

Stable, 

abundant, 

No/low cost

Identify suitable 

ash, attrition

Calcined Flint 

Clay

SiO2, Al2O3, 

TiO2,Fe2O3

2,600 1,050
Mined 

abundant

Low 

absorptivity, 

attrition

Ceramic 

particles

75% Al2O3, 

11%SiO2, 

9%Fe2O3,3%TiO

2

3,300
1,200 (at 

700°C)

High solar 

absorptivity, 

stable

Relatively 

higher cost

Mitigate risks of attrition, high cost, and low heat absorption


