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The Challenge
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 Ammonia (NH;) is an energy-dense chemical and a vital
component of fertilizer -

— Potential to be used as an alternative fuel and/or in CSP ...
thermochemical energy storage
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* NH,; currently synthesized via the Haber-Bosch process
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from natural gas

— Requires high pressures (15-25 MPa) and moderately
high temperatures (400-500 OC) CO, industrial emissions from China, 20052
o Capital and carbon intensive; practical in large facilities

— Consumes > 1% of global energy use?

— Process including H, production generates about 2.3 t of fossil-derived CO, per t of NH,,?
and expends 2% of the world’s energy budget from natural gas?

* The US imported almost 4 million metric tons of ammonia (28% of its total use) in 20164
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The Solution

A solar thermochemical looping technology to produce and store nitrogen from
air for the subsequent production of ammonia via a novel synthesis pathway

* Inputs are sunlight, air, and hydrogen;
the output is ammonia
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Technical Approach

Synthesis Synthesis Process and
: Full system and
and and reactor design,
o S techno-
characterization characterization development, :
. S e economic
of oxides for N, of nitrides for and
. : : analyses
recovery from air NH; production demonstration
* Maximize oxygen e Systematic * Robust heat and mass ¢ Underpins other thrusts
capacity and minimize  investigation of transfer models enable . |nterrelation between
reduction endotherm complex nitrides param?tric stuc?i'es of component and system
e Measure redox that promote . operating conditions designs, operating
capacity as a function nitrogen vacancies  , paceiver and reactor conditions, mass and
of T & pO,, reaction ¢ Measure rates of design based on energy flows, and
kinetics, reaction nitridation and models normalized costs
endotherm, heat  reductionandNH;  , rjpication and lab- = Continuously update and
capacity, and cyclability  yield scale testing refine based on

: experimental and modeling
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MIECs for N, Purification

e Mixed lonic-Electronic Conductors (MIECs) allow for fast redox kinetics, large
and tunable oxygen non-stoichiometries
* The optimized material will balance kinetics, temperature, and enthalpy to
maximize 0, minimize AT, maximize kinetics
— Match to temperature/pO, regimes
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Metal Nitrides (MN) for NH; Production

|dentification of suitable MN is highest risk/highest reward
aspect of STAP

 Based on thermodynamics, successful material likely to be complex nitrides
Induce nitrogen vacancies through doping (MIEC analogue)
Line compounds limited, aren’t tunable
e Beginning with promising MN compounds (Mn, Mo, Co, Cr) systematically
synthesize doped compounds and measure effect on nitridation/NH,

production

T(°C)
Utilize thermodynamic models to

predict thermodynamically-favorable
reactions and guide syntheses
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Multi-physics Model Requirements

Detailed CFD Modeling of Multiphase Reactors Transient Modeling of Packed Bed Reactors
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fraction ®) v (W/m?) p(K) Albrecht, “Multiscale modeling and experimental interpretation of

perovskite materials in thermochemical energy storage and conversion

Babiniec, “Considerations for the Design of a High-Temperature Particle RO . b .
for application in concentrating solar power,” PhD Thesis, 2016.

Reoxidation Reactor for Extraction of Heat in Thermochemical Energy Storage
Systems,” ASME P&E Conference, 2016.

* System and reactors are highly coupled and thermally integrated
* Require multi-physics models that can capture:
Multi-phase chemically reacting flow
Heat transfer (particle-gas, particle-particle, particle-wall, radiation)
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System and Techno-Economic Analyses (TEA)

Develop and refine throughout the project, systems and techno-economic
models to guide materials choices, reactor design, and determine projected
JpS— cost for a scaled-up system
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e Heat recuperation on oxide side important for
high efficiency (similar to solar fuels)
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important for high efficiency
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Outcomes

e Demonstrate the feasibility of a solar thermochemical looping
technology to produce and store nitrogen (N,) from air for the
subsequent production of ammonia (NH;) via an advanced two-stage
process

e Greatly reduce, or eliminate altogether, the large carbon footprint
created by the Haber-Bosch process, greatly decreasing CO, emissions

e Demonstrate feasibility and cost benefit of coupling STAP process to a
CSP plant and a path to < S500 per metric ton of NH,

 Impact: Feed the world with a fossil fuel-free, renewable energy
pathway to ammonia synthesis
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Thermodynamics: The Challenge of NH; Synthesis

|dentification of suitable MN is highest risk/highest reward aspect of STAP

e Data for 35 different metals
reviewed (subset plotted here)

e |Includes metals where nitridation
is favorable at all T (Group A) and
several where formation is not
favorable at any T (Group B)

e Tune AH through combinations of
metals from Groups A and B, e.g.
CoMo, NiMo, FeMo
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—— 3HZ(g) + N2{g) = 2MH3(g)
2in+ N, = 2InN

— BMi + N2{g) = ZMi3M
— 3Zn + N2(g) = Zn3N2
— BCo +MN2{g) = 2Ca3N

— 4Fe + N2(g) = 2Fe2M
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Group B: Nitridation favored

4Mo + MN2(g) = 2Mo2N
— 3Mn + N2{g) =Mn3N2
— AW + M2{g) = 2W2N
— 2Ga + N2{g) =2GaN
— 2Cr +MN2({g) =2CrN
—— B6Li + N2{g) = 2Li3N
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