

SETO CSP Program Summit 2019

Solar-Thermal Ammonia Production (STAP)

Andrea Ambrosini Sandia National Laboratories

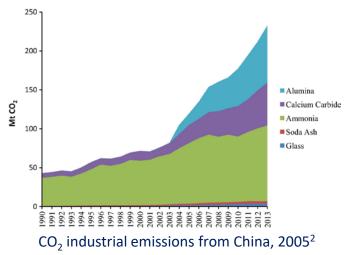
energy.gov/solar-office

The Team

SETO CSP Program Summit 2019

- <u>Sandia National Labs</u>: Andrea Ambrosini (PI), Sean Babiniec, Kevin Albrecht, Clifford Ho
- <u>Georgia Institute of Technology</u>: Peter Loutzenhiser, H.
 Evan Bush
- <u>Arizona State University</u>: Ellen Stechel, Ivan Ermanoski
- <u>Acknowledgments</u>: James Miller, Sasha Egan

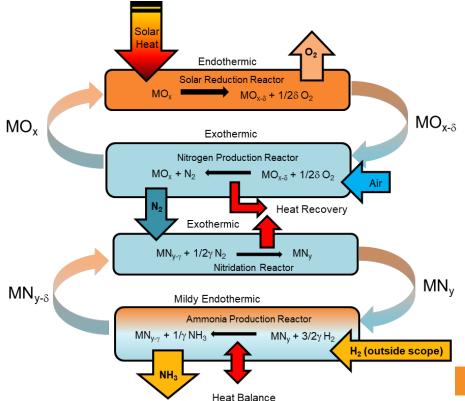
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND No. 2019-2696C.


The Challenge

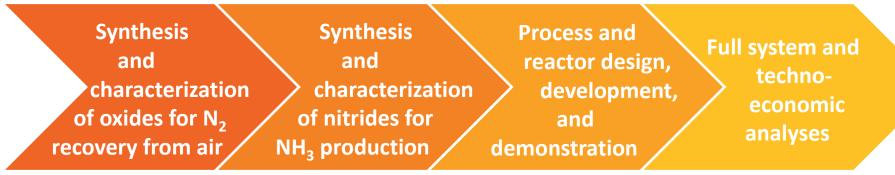
- Ammonia (NH₃) is an energy-dense chemical and a vital component of fertilizer
 - Potential to be used as an alternative fuel and/or in CSP thermochemical energy storage
- NH₃ currently synthesized via the Haber-Bosch process from natural gas
 - Requires high pressures (15-25 MPa) and moderately high temperatures (400-500 °C)
 - Capital and carbon intensive; practical in large facilities
 - Consumes > 1% of global energy use¹

SETO CSP Program Summit 2019

- Process including H₂ production generates about 2.3 t of fossil-derived CO₂ per t of NH₃,² and expends 2% of the world's energy budget from natural gas³
- The US imported almost 4 million metric tons of ammonia (28% of its total use) in 2016⁴



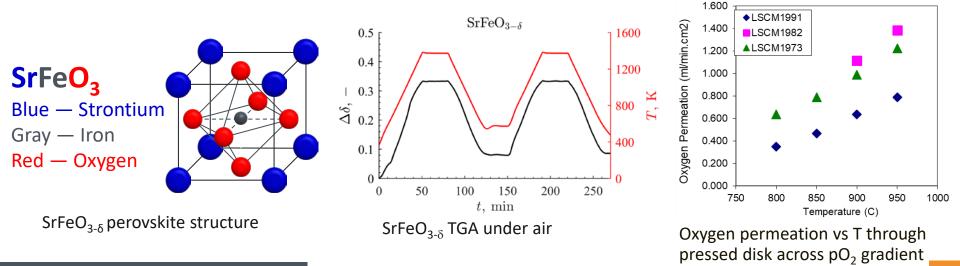
3


The Solution

A solar thermochemical looping technology to produce and store nitrogen from air for the subsequent production of ammonia via a novel synthesis pathway

- Inputs are sunlight, air, and hydrogen; the output is ammonia
- Significantly lower pressures than Haber-Bosch
- Greatly decreases or eliminates carbon footprint using renewable H₂
- The process consumes neither the oxide nor the nitride particles, which actively participate in the reactions, cyclically

Technical Approach

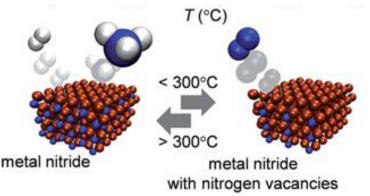


- Maximize oxygen capacity and minimize reduction endotherm
- Measure redox capacity as a function of T & pO₂, reaction kinetics, reaction endotherm, heat capacity, and cyclability
- Systematic investigation of complex nitrides that promote nitrogen vacancies
 - Measure rates of nitridation and reduction and NH₃ yield
- Robust heat and mass transfer models enable parametric studies of operating conditions
- Receiver and reactor design based on models
- Fabrication and labscale testing

- Underpins other thrusts
- Interrelation between component and system designs, operating conditions, mass and energy flows, and normalized costs
- Continuously update and refine based on experimental and modeling results

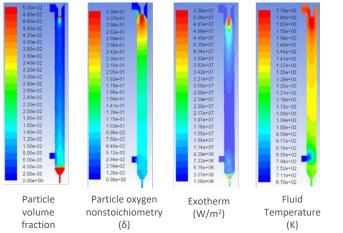
MIECs for N₂ Purification

- Mixed Ionic-Electronic Conductors (MIECs) allow for fast redox kinetics, large and tunable oxygen non-stoichiometries
- The optimized material will balance kinetics, temperature, and enthalpy to maximize δ , minimize Δ T, maximize kinetics
 - Match to temperature/ pO_2 regimes

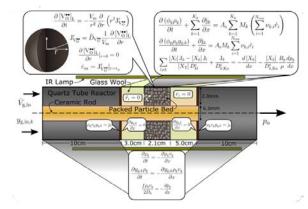

SETO CSP Program Summit 2019

(air and He)

Metal Nitrides (MN) for NH₃ Production


Identification of suitable MN is highest risk/highest reward aspect of STAP

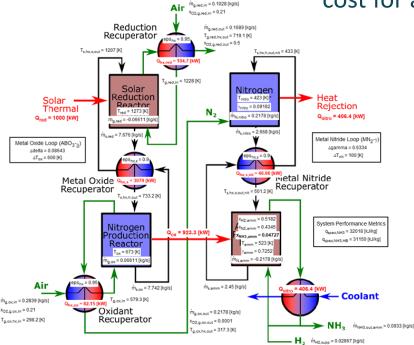
- Based on thermodynamics, successful material likely to be complex nitrides
 - Induce nitrogen vacancies through doping (MIEC analogue)
 - Line compounds limited, aren't tunable
- Beginning with promising MN compounds (Mn, Mo, Co, Cr) systematically synthesize doped compounds and measure effect on nitridation/NH₃ production
 - Utilize thermodynamic models to predict thermodynamically-favorable reactions and guide syntheses


Multi-physics Model Requirements

Detailed CFD Modeling of Multiphase Reactors

Babiniec, "Considerations for the Design of a High-Temperature Particle Reoxidation Reactor for Extraction of Heat in Thermochemical Energy Storage Systems," *ASME P&E Conference*, 2016.

Transient Modeling of Packed Bed Reactors


Albrecht, "Multiscale modeling and experimental interpretation of perovskite materials in thermochemical energy storage and conversion for application in concentrating solar power," *PhD Thesis*, 2016.

- System and reactors are highly coupled and thermally integrated
- Require multi-physics models that can capture:
 - Multi-phase chemically reacting flow
 - Heat transfer (particle-gas, particle-particle, particle-wall, radiation)
 - Equilibrium constrained chemical reaction

SETO CSP Program Summit 2019

System and Techno-Economic Analyses (TEA)

Develop and refine throughout the project, systems and techno-economic models to guide materials choices, reactor design, and determine projected

cost for a scaled-up system

Preliminary System Modeling

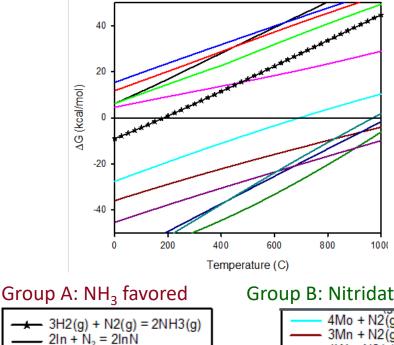
- Operating temperature and pressure of nitride reactors will be an important analysis
- Heat recuperation on oxide side important for high efficiency (similar to solar fuels)
- Thermally integrating oxide and nitride sides important for high efficiency
- Nitride material thermodynamics require more development of optimal parameters

Outcomes

- Demonstrate the feasibility of a solar thermochemical looping technology to produce and store nitrogen (N₂) from air for the subsequent production of ammonia (NH₃) via an advanced two-stage process
- Greatly reduce, or eliminate altogether, the large carbon footprint created by the Haber-Bosch process, greatly decreasing CO₂ emissions
- Demonstrate feasibility and cost benefit of coupling STAP process to a CSP plant and a path to < \$500 per metric ton of NH₃
- Impact: Feed the world with a fossil fuel-free, renewable energy pathway to ammonia synthesis

Thank You

SETO CSP Program Summit 2019


Thermodynamics: The Challenge of NH₃ Synthesis

Identification of suitable MN is highest risk/highest reward aspect of STAP

6Ni + N2(q) = 2Ni3N 3Zn + N2(a) = Zn3N2

 $C_0 + N_2(q) = 2C_03N$ 4Fe + N2(a) = 2Fe2N

- Data for 35 different metals reviewed (subset plotted here)
- Includes metals where nitridation is favorable at all T (Group A) and several where formation is not favorable at any T (Group B)
- Tune ΔH through combinations of metals from Groups A and B, e.g. CoMo, NiMo, FeMo

Group B: Nitridation favored

4Mo + N2(g) = 2Mo2N
6Li + N2(g) = 2Li3N
107