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Nanophotonics Enhanced Direct
Solar Membrane Distillation
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Project Objectives

Develop and optimize a pilot NESMD system, move the
technology from TRL 3to TRL 7, and assess its potential
for low cost solar desalination

O Develop mathematical models at microscopic, reactor, and system
levels

O Design, build, test, and optimize an integrated, NESMD pilot
system

0 Combine mathematical modeling and experiments in bench and
pilot scale systems to investigate the effect of system scale, influent
water quality, and environmental conditions (e.g., solar irradiance
and ambient temperature);

Assess the long-term system reliability and performance stability;

O Develop model framework for comprehensive cost and market
analyses as well as system optimization for different source water
and geographical locations
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Research Needs & Challenges

Research Needs

O Membrane module design
0 Heat recovery/management
Q System scale up

a Effect of environmental
conditions

Technical Challenges

0 Non-linear, coupled heat and
mass transfer processes

0 Non-steady state condition

O Complex, multi-objective
optimization

0 Membrane stability,
fouling/scaling

QO Scale up of membrane
fabrication




Research Approach

Reactor/system models (Elimelech, Yale Univ.)
« Development of reactor scale heat and mass transfer models;
« Development of system energy and mass balance model

Bench scale reactor testing
(Li, Rice Univ.)
* Design and build a scaled-down

Pilot data

membrane module;
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< § . Laboratory testing using a Pilo_t study (Min, ES Engineering)
55 simulated and real feed waters; | © * Design and construct a pilot NESMD
S « Optimization of module design | 5 system;
82 : —— : c||-" |+ Pilottesting at hosting sites;
o £ System testing (LI, Rice Univ.) 12 | 4.3 Optimization of the pilot system
< * Design and build a lab-scale, SHS | 4.4 Preliminary design of larger system
2 integrated NESMD prototype; O C T
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Optimization (Mauter, CMU)
» Establish cost optimization model framework;
* Incorporation of solar irradiance and climate data;
Performance |« Cost analysis based on pilot testing data and large scale design
goal, adjustment| « Market analysis




Reactor Scale Model
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Bench-scale Experimental System
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System Scale Model

Solar Radiation
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Reactor/system Configurations
Considered

A NESMD reactor configurations
Sweeping gas Air gap

Feed channel —p»
Membrane
Permeate channel
Condensing plate
Cooling channe

B Singlestagewith ¢  Single stage with looping
pass through ‘

Conductive gap

Brine

Product
water

Feed

‘E»To next
Product|; module

Heat
exchanger




Cost Optimization Model Framework

Parameters Cost optimization model
+ Process parameters: solution * NLP minimizing the LCOW
properties, channel heights * Mass and energy balance equations
material conductivities, and * Process unit equations describing reactors,
membrane permeabilities heaters, chillers, and heat exchangers.
+ Financial parameters for: —) ¢+ System equations connecting process units
membrane reactor, heaters, in the specified configuration.
chillers, heat exchangers, + Financial equations estimating the capital
pumps, indirect capital, and operating cost
maintenance, electricity, + Variables include: temperatures and
siting, and installation flowrates of the streams, sizes of the
equipment, and duties of the heaters,
chillers, and heat exchangers

Case specifications
*+ Feed salinity and flowrate
+ Water recovery
+ Solar irradiance

Cost optimal solutions

Analysis
+ Cost optimal LCOW, GOR, and average
+ Pass-through or looping water flux for multiple case specifications and
+ Single or multi-stage system configurations
* Inclusion of heaters, chillers, + Extract generalizable guidelines for low cost
and heat exchangers design and operation

System configuration




Scaled-down Module Design
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Preliminary Results: Reactor Model

Transmembrane Flux (LMH)

Experimental measurements
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—O— Experimental data

1 —— Modeling results

30 35 40 45
Feed Temperature (°C)

50

30.18 |27.62 20.1 21.62
39.96 |34.99 20 22.34
49.89 41.73 19.75 25.12
Model prediction

Treedin(’C) | Treed,out(’C) | Tpermin(°C) | Tperm,out(°C)
30 27.4 20 21.06
40 34.68 |20 22.37
50 41.78 |20 24.1




Preliminary Results: Optimization Model
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Preliminary Results: Reactor Design

A and | Acrylic closing plates

| (thickness 12.7 mm)

B Irradiation acrylic glass
(thickness 3mm)

CE, Silicon rubber frames

and G

D Hydrophobic membrane

F and | Plastic net spacer

H

1 Inlet hot feed water

2 Outlet hot feed water

3 Inlet cold feed water

4=1 | Outlet cold feed water,
which is the inlet of feed
water

5 Distillate

Venting line

9.9 mm 21.108 mm




Feasibility to Meet LCOW
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where Qs denotes the solar flux, nyx is
the heat exchange efficiency, and AYH is
the enthalpy of vaporization of water.
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where ]_day IS the average water flux per day

assuming a daily solar irradiation time of
8 h day 1.
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