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Nanophotonics Enhanced Direct 

Solar Membrane Distillation

T1 Tf

Advantages

 Directly utilizes sunlight for desal

 Integrates solar collection and 

desalination

 Higher energy efficiency due to

 Localized heating

Reversed temperature 

polarization

 Low feed recirculation rate

 Scalability

Reduced capital and O&M costs 

compared to existing technologies



Project Objectives

Develop and optimize a pilot NESMD system, move the 
technology from TRL 3 to TRL 7, and assess its potential 
for low cost solar desalination
 Develop mathematical models at microscopic, reactor, and system 

levels 

 Design, build, test, and optimize an integrated, NESMD pilot 
system 

 Combine mathematical modeling and experiments in bench and 
pilot scale systems to investigate the effect of system scale, influent 
water quality, and environmental conditions (e.g., solar irradiance 
and ambient temperature);

 Assess the long-term system reliability and performance stability;

 Develop model framework for comprehensive cost and market 
analyses as well as system optimization for different source water 
and geographical locations



Research Needs & Challenges

 Membrane module design

 Heat recovery/management

 System scale up

 Effect of environmental 

conditions

 Non-linear, coupled heat and 

mass transfer processes

 Non-steady state condition

 Complex, multi-objective 

optimization

 Membrane stability, 

fouling/scaling

 Scale up of membrane 

fabrication 

Research Needs Technical Challenges



Research Approach

Performance 

goal, adjustment

Bench scale reactor testing

(Li, Rice Univ.)
• Design and build a scaled-down 

membrane module;
• Laboratory testing using 

simulated and real feed waters; 
• Optimization of module design

Reactor/system models (Elimelech, Yale Univ.)

• Development of reactor scale heat and mass transfer models;

• Development of system energy and mass balance model

System testing (Li, Rice Univ.)

• Design and build a lab-scale, 

integrated NESMD prototype;

• Testing of the prototype using 

simulated and real feed waters; 

• Prototype optimization
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Pilot study (Min, ES Engineering)

• Design and construct a pilot NESMD 

system;

• Pilot testing at hosting sites; 

4.3 Optimization of the pilot system

4.4 Preliminary design of larger system
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Optimization (Mauter, CMU)

• Establish cost optimization model framework;

• Incorporation of solar irradiance and climate data; 

• Cost analysis based on pilot testing data and large scale design

• Market analysis 
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Reactor Scale Model

𝑁𝑢 = 14.02(𝑅𝑒𝑃𝑟𝑑ℎ/𝐿)
0.1676

𝑁𝑢 = 14.02(𝑅𝑒𝑃𝑟𝑑ℎ/𝐿)
0.1676
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System Scale Model



Reactor/system Configurations 

Considered



Cost Optimization Model Framework



Scaled-down Module Design



Preliminary Results: Reactor Model

Tfeed,in(℃) Tfeed,out(℃) Tperm,in(℃) Tperm,out(℃)

30.18 27.62 20.1 21.62

39.96 34.99 20 22.34

49.89 41.73 19.75 25.12

Experimental measurements

Tfeed,in(℃) Tfeed,out(℃) Tperm,in(℃) Tperm,out(℃)

30 27.4 20 21.06

40 34.68 20 22.37

50 41.78 20 24.1

Model prediction



Preliminary Results: Optimization Model



Preliminary Results: Reactor Design

21.108 mm9.9 mm



Average Water Flux:

 𝐽 =
𝑄𝑆

1 − 𝜂𝐻𝑋 Δ𝑣𝐻

where 𝑄𝑆 denotes the solar flux, 𝜂𝐻𝑋 is 

the heat exchange efficiency, and Δ𝑣𝐻 is 

the enthalpy of vaporization of water.

System Size:

𝑆𝑦𝑠𝑡𝑒𝑚 𝑆𝑖𝑧𝑒 =
𝑇𝑎𝑟𝑔𝑒𝑡 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

 𝐽𝑑𝑎𝑦

where  𝐽𝑑𝑎𝑦 is the average water flux per day 

assuming a daily solar irradiation time of 

8 h day−1.

Feasibility to Meet LCOW
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