

SETO CSP Program Summit 2019

Zero Liquid Discharge Water
Desalination Process Using
Humidification-Dehumidification
in a Thermally-Actuated
Transport Reactor

Bahman Abbasi
Oregon State University

Key Technical Challenge

- Desalination can be expensive and inefficient:
 - Multi-billion dollar projects.
 - 3-5X the minimum thermodynamic energy of separation.
- 1. **Electricity**: Most efficient desalination plants require large electrical energy.
- Mobility: Desalination plants are very large and immobile in order to reach acceptable efficiencies.
- 3. Environmental consideration: Brine byproduct may be environmentally damaging and increases the operating cost.

Approach

- Small-scale, portable, modular, thermallyactuated water humidificationdehumidification desalination plant
- 10 kg/hr zero liquid discharge (ZLD) desalination module for 100,000 ppm source water

Approach

- Thermally actuated nozzles
- No membranes
- Extensive heat recuperation
- Patent

 application is in
 preparation

Impact

- Specific energy consumption will be 54 kWh_{th}/m³ (2.8X minimum thermodynamic energy
- \$1.52/m³ levelized cost of water.
- A town of 7,000 people could have water security for 25 years, for 30.4 million dollars using this desalination technology.