

SETO CSP Program Summit 2019

Molten Salt Technical Session

Enabling High-Temperature Molten Salt CSP through the Facility to Alleviate Salt Technology Risks (FASTR)

Kevin Robb, Oak Ridge National Lab. (ORNL) robbkr@ornl.gov

Setting the Stage: CSP Gen3 Roadmap Gaps

- Salt Chemistry
- Materials Selection/Compatibility, Piping
- Plant Sensors
- Thermal Energy Storage
- Salt Solar Receiver, Salt-to-sCO2 Heat Exchanger
- Pumps, Valves, Heat trace and Insulation
- Component Test Facilities

SETO Sponsored Efforts Underway In all Areas

This

Session

NREL/TP-5500-67464

Salt Thermophysical Properties

- Density, specific heat, melting point
- Viscosity & thermal conductivity
 - Difficult to measure accurately, correctly
- Challenges:
 - Hygroscopic, high temperature, corrosive, vapor pressure, references

Materials Selection/Compatibility

- A range of materials are being considered
 - Iron based: 316, 347, 304H, HR 120, ...
 - Nickel based: 625, 617, 600, C-276, 230, 740H, 800H, ...
- Compatibility knowledge base is growing
 - Focused research on salt-material interface
 - Growing dataset of static capsules for screening
 - Limited dataset of flowing non-isothermal tests
- Practicalities
 - Code acceptance for industrial application
 - Vendor supply chain

Static Capsules

Thermal Convection Loop

Plant Sensors

- Salt-specific sensors under development
 - Redox potential
 - Oxygen/hydroxide specie impurities
 - Corrosion specie impurities
- Traditional I&C
 - temperature, level available
 - flowmeters, pressure challenges

ANL multifunctional voltammetry sensor

Component Test Facilities

- Thermal convection loops:
 - Purpose: material compatibility, sensor demo.
 - Recent Operation: ORNL, ORNL, UW
- Forced flow loops (pumped):
 - Purpose: Material compatibility, component & sensor demo., separate effects tests
 - In Operation: ORNL, UW
 - In Development: ORNL, UAriz, VT, ORNL, UMich, UNM, ...
- Pilot facilities
 - In Development: NREL (Topic 1 awardee)

EERE SETO sponsor nuclear energy sponsors

ORNL Liquid Salt Test Loop

FASTR: Facility to Alleviate Salt Technology Risks

- Objective: Develop and operate a high-temperature (>700°C) molten chloride salt facility designed to enable a variety of testing in support of the Gen 3 CSP molten salt pathway.
 - Demonstrate salt can be circulated without freezing or corrosion issues
 - Demonstrate salt/system can be monitored & controlled
 - Serve as test bed to de-risk sub-components, underlying technology, and vendor hardware
- 3 year project started February 2018
- Within project, ANL developing a multifunctional voltammetry sensor capable of longduration measurements of salt impurities, corrosion products, and salt redox state

FASTR: Facility to Alleviate Salt Technology Risks

Capability	Value
Salt	NaCl-KCl-MgCl ₂
Flow rate	3-7 kg/s (30-70 gpm)
Design temp.	725°C (1337°F)
Main heater	350 kW _{th}
Trace heating	60 kW _{th}
Salt volume	120 L (32 gallons)
Main piping	2-inch schedule 40

 Status: major design complete, components in acquisition phase

Molten Salts – Parallel Session

- Comparison of Protecting Layer Performance for Corrosion Inhibition in Molten Chloride Salts through Interfacial Studies at the Molecular Scale Sheng Dai, Oak Ridge National Laboratory
- 2. Full Loop Thermodynamic Corrosion Inhibition and Sensing in Molten Chloride Systems Brenda Garcia-Diaz, Savannah River National Laboratory
- 3. Molten Chloride Thermophysical Properties, Chemical Optimization, and Purification Judith Vidal, National Renewable Energy Laboratory
- 4. Progression to Compatibility Evaluations in Flowing Molten Salts Bruce Pint, Oak Ridge National Laboratory
- 5. Development of In-Situ Corrosion Kinetics and Salt Property Measurements Li Liu, Rensselaer Polytechnic
- 6. High Temperature, Raman Spectroscopy Based, Inline, Molten Salt Composition Monitoring System for Concentrating Solar Power Systems Kevin Harsh, Sporian Microsystems

Salt Purity

Redox Potential

What's good enough?

How much/many needed?

Corrosion Control

Cost of compromises?

Active/Passive Measures
Sense & Suppress, Getters

HCl production

Resilient StructuresAlloy Selection, Leak Proof

SETO CSP Program Summit 2019