

SETO CSP Program Summit 2019

# Interfacial Studies of Performance of Protecting Layer for Corrosion Inhibition







Sheng Dai, ORNL

#### **Knowledge Gap in Interfacial and Melt Structures**



**Complexity at interfaces** 

- Multicomponent species in equilibria
- Melts are not always ionic; can be molecular, network like



Dai, S., et. al. J. Raman Spectr. 1995, 26, 929-932

**Complexity in melt structures** 

# X-ray and neutron scattering are ideal to probe complex molten salt media in operando



#### Neutrons can help in many ways:

- Neutrons easily penetrate many vessel materials, enabling in situ measurements
- Probe speciation in complex multicomponent melts and correlate atomistic structures to thermodynamic and corrosion properties of molten salt systems
- Characterize in-situ interfacial structures between metals and molten salts

## Main challenges and goals

- The extreme corrosivity of chloride-based transfer fluids for concentrated solar power hinders the use of molten salts.
- Find the mechanism of the corrosion allowing us to make educated decision on how to proceed with salt implementation in existing setups or how to create new better ones
- Employ cutting edge spectroscopy techniques, such as grazing incidence X-ray absorption, scattering, and reflectometry, allowing us to approach corrosion on the interface and study it at the molecular level.
- Design a new cell enabling in situ studies to see the corrosion happening step-by-step.

## **Key activities**

- Purification of the candidate salt for transfer fluid: MgCl<sub>2</sub>
  and KCl
- Film preparation by sputtering of the pure alloy and then the salt on a substrate
- Annealing of the films for ex situ studies
- Grazing Incidence X-ray spectroscopy and scattering measurements
- In situ measurements and in situ cell design

#### Salt purification



- Ultra High purity argon
- P<sub>2</sub>O<sub>5</sub> filled traps to further dry gas
- Salt quantity dictates sparging time
- Final purge with H<sub>2</sub>/Ar mixture to remove residual chlorination products



Oxide content measured via acid/base titration (~50ppm)

## Alloy and salt deposition





Deposition of alloys and salt



- As-deposited film thickness of 51.3 nm
- Film segregates into 3 regions
  - Ni rich surface
  - Bulk alloy
  - Ni poor or Cr rich substrate interface

#### **Grazing Incidence X-ray Absorption measurements**





#### After annealing



- Loss of planar interface
- 111 Textured Haynes film transformed to graincoarsened untextured FCC Ni
- Evidence for  $\alpha$ -CrOOH and other phases

#### **Summary**

- Successfully purified MgCl<sub>2</sub> and KCl and lowered oxide concentration down to 50 ppm,
  which allows more systematic study of corrosion
- Deposited **smooth alloy and salt films**, which are necessary for grazing incidence studies
- Grazing incidence X-ray absorption shows **oxidation of Cr in the alloy to \alpha-CrOOH** indicating pathway for the corrosion
- Grazing incidence diffraction also shows **texturing of Ni metal** after Cr leaves the alloy structure showing what happens to the corroded alloy
- Neutron and X-ray scattering can be done in situ up to 600°C and 900°C, respectively
- Neutron scattering cell for **higher temperatures** is **designed to allow** *in situ* **studies** at operating temperatures