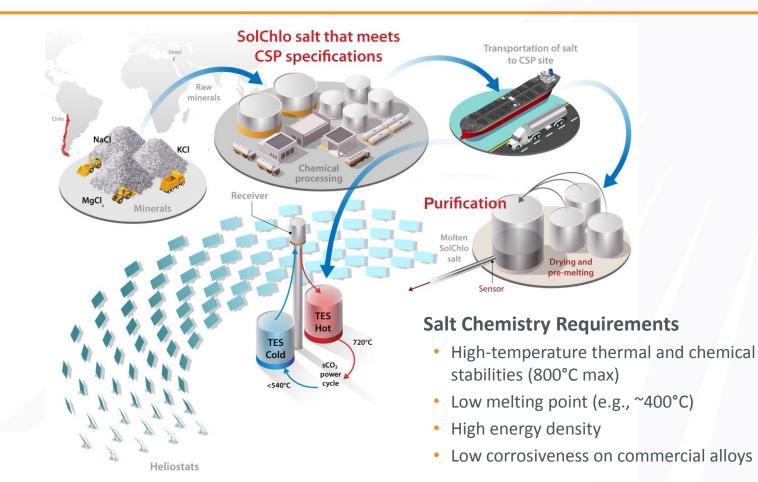


SETO CSP Program Summit 2019

Molten Chloride Thermophysical Properties, Chemical Optimization, and Purification

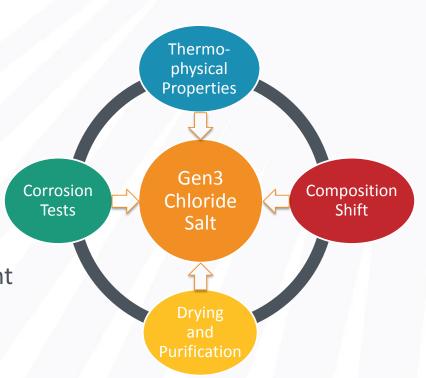

Purification Protocol, Impurity Determination, Salt Compositions, and Energy Density

energy.gov/solar-office

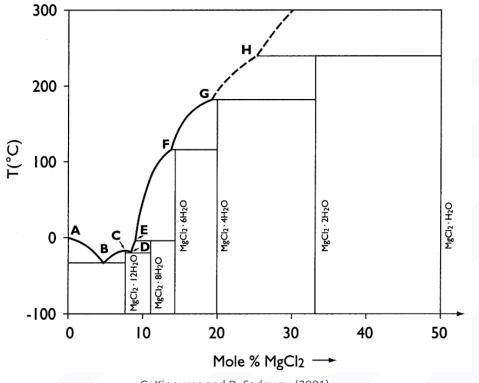
Dr. Judith Vidal, Principal Investigator Dr. Youyang Zhao

Gen3 CSP with Molten Chloride Salts

Gen3 CSP with Molten Chloride Salts


Challenges

- Thermophysical properties and corrosion mechanism are less known
- Affordable route needs to be carefully engineered toward the optimal salt composition(s) from commercially available and low-cost raw materials


NREL's Strategies

- Benchmark corrosion behavior of the commercial salt and mitigated by engineering thermal, and chemical purification processes.
- Tracking of salt composition shift and change of corrosive impurities during drying, purification, and melting and plant operation.
- Accurately and reliably measure relevant thermophysical properties to select the optimal salt composition(s) with the highest per-cost energy density.

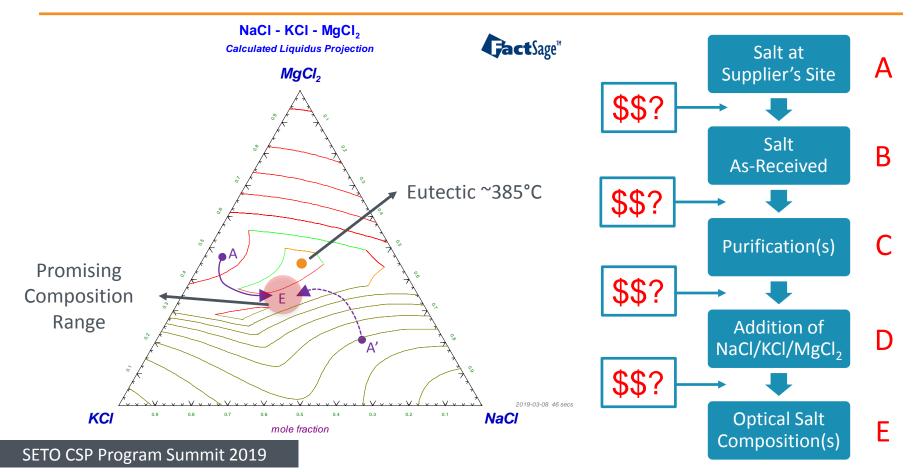
Purification Protocol

Thermal purification

- Step-wise dehydration of MgCl₂·6H₂O (or KMgCl₃·6H₂O) at 117°C, 180°C, 240°C, and 400°C
- However, hydrolysis of MgCl₂ with released H₂O to form MgOHCl and HCl(g)

Chemical purification

 Reduction of MgOHCl and impurity cations by elemental Mg


G. Kipouros and D. Sadoway (2001)

SETO CSP Program Summit 2019

Reactions during Purification

- Dehydration and hydrolysis at $117^{\circ}-400^{\circ}C$ $MgCl_2 \cdot xH_2O \rightarrow MgOHCl + HCl(g)$
- Thermal decomposition of MgOHCl above ~550°C
 MgOHCl = MgO + HCl(g)
- Recovery of MgCl₂ during chemical purification at ~650°-800°C $MgOHCl + \frac{1}{2}Mg = MgO + \frac{1}{2}MgCl_2 + \frac{1}{2}H_2(g)$
- MgOHCl is the major undesired species
 - Its formation by hydrolysis produces HCl(g): corrosion problem
 - Its thermal decomposition produces HCl(g): corrosion problem
 - Its thermal decomposition produces MgO (largely insoluble/non-recoverable): erosion problem

Discovering Route(s) Toward Gen3 Molten Chlorides

7

Thank You

Questions?

Dr. Judith Vidal

Building Energy Science Group Manager Thermal and Materials Research Team Lead Buildings and Thermal Science Center

National Renewable Energy Laboratory (NREL)

15013 Denver West Parkway. Golden, CO 80401

+1(303)275-4290 | judith.vidal@nrel.gov

SETO CSP Program Summit 2019