

SETO CSP Program Summit 2019

Integrated heat pump thermal storage and power cycle for CSP

energy.gov/solar-office

Josh McTigue, NREL JoshuaDominic.McTigue@nrel.gov

Summary

- Challenges for CSP and Pumped Thermal Electricity Storage (PTES)
- Combining CSP with PTES
- Project tasks and impact
- Project team

Technical Challenges for CSP

Reduced utilization of power cycle and storage in the winter.

Technical Challenges for CSP

Reduced utilization of power cycle and storage in the winter.

Pumped Thermal Electricity Storage (PTES)

Pumped Thermal Electricity Storage (PTES)

Pumped Thermal Electricity Storage (PTES)

Brief history

1924 – first patents to Maguerre

1970s – patents to Cahn, Smith (LAES), Babcock

2000s – concept revived in UK (Isentropic Ltd. + Cambridge) and France (CEA+Saipem) and Switzerland (ABB) simultaneously

2010s – Active research globally. Isentropic Ltd. builds prototype, sells to Newcastle University, UK. Various DOE funding awarded.

Commercial interest: Siemens/Stiesdal Storage Technologies, Malta Inc (Google X), Highview Power, Isentropic Ltd., ABB, WindTP, Echogen, Brayton Energy

Technical Challenges for PTES

- Demonstration of technology
- High temperature compression for heat pump
- Suitable materials for low-temperature storage
- Demonstrate market/value of PTES

Combining PTES with CSP – 'solar-PTES'

- Leverage CSP expertise in hot thermal storage and power cycles
- Integrating PTES with an existing CSP plant requires the development of the heat pump and cold storage

Combining PTES with CSP – 'solar-PTES'

- Leverage CSP expertise in hot thermal storage and power cycles
- Integrating PTES with an existing CSP plant requires the development of the heat pump and cold storage

New feature	Impact
Heat pump charges hot storage	Decouples storage capacity from solar availability
Heat pump charges cold storage	Reject heat at lower temperatures:Increases discharging efficiencyRobust to ambient temperature variations
Grid storage capability	Additional value and markets for CSP to operate in

Project tasks and impacts

1. Develop system concepts	 Invent new storage systems and power cycles 	
2. Economic models of components	 Develop low-cost solutions that leverage existing technologies 	
3. Detailed thermodynamic modelling	 New understanding of interaction between thermal storage and power cycles Develop open-access models to facilitate research 	
4. Grid integration modelling	 Assess value solar-PTES provides to grid Assess commercial viability of solar-PTES 	

SETO CSP Program Summit 2019

Project team

ΡI

Craig Turchi

Economics

Ty Neises s-CO₂ power

cycles

Guangdong Zhu CSP analysis

Janna Martinek Grid analysis

Jennie Jorgenson Grid analysis

Alex White

Cambridge University

SETO CSP Program Summit 2019

Christos

Markides

Imperial College,

London

Pau Farres-Antunez Cambridge University Partners

Questions

