

SETO CSP Program Summit 2019

Loop Thermosyphon Enhanced Solar Collector

Advanced Cooling Technologies, Inc. University of Maryland, College Park

energy.gov/solar-office

Fangyu Cao, Ph.D.

Background

Solar availability for desalination

Project Objective

- ACT, collaborating with UMD, is developing an innovative, low-cost Loop Thermosyphon Solar Collection (LTSC) system.
- The overall project goal: to develop a LTSC system that efficiently collect and convert up to 1.5 kW/m² solar radiation to generate steam from brackish water at an overall efficiency of >80%, with an installation cost of less than \$30/m².
- System components:
 - Solar concentrator
 - Evacuated glass tube
 - Volumetric absorbing nanofluid
 - Loop thermosyphon
 - Steam generator

DE-EE0008398

Budget period: 10/01/2018 – 09/30/2021 \$1.5M federal funding + \$375k cost share

Technical Innovation

- Graphene-oxide based nanofluid
 - Volumetric solar absorbing
 - Local heating of working fluid
 - Reliable two-phase durability with no surfactant
- Transparent evacuated glass tube
 - No back surface absorbing coating
 - Decreased surface radiation and coating cost
 - No risk of coating degradation
 - No risk of nanofluid degradation at hot surface
 - Current low-cost evacuated tube and coating technologies including anti-reflection and low emission coatings will be leveraged
- High performance loop thermosyphon system
 - High heat flux limit
 - Stable two-phase nanofluid circulation
 - Passive operation with no solid moving parts
 - Low maintenance with no operation cost
- Overall high solar-to-thermal energy conversion rate with low

Technical Approach

Loop thermosyphon modeling

Pressure balance: $\sum \Delta P_{friction} + \sum \Delta P_{gravitational} = 0$

Mass balance: $\dot{m}_{tot} = \sum \dot{m}_{vapor} + \sum \dot{m}_{liquid}$

Input Power: Power = $\dot{m}_{tot} \dot{h}_{fg} (x_7-x_2)$

$\Delta P_{friction}$	Rising 2φ tube (evap. outlet -> cond. Inlet)	Horiz. 2φ tube (evap. outlet-> condenser Inlet)	Fall 1 vertical tube (condenser out -> evap. Inlet)	Fall 1¢ horizontal tube (condenser outlet -> evap. Inlet)
Density (ρ_i)	$\bar{\rho}_{2\varphi}(T) = \left[\frac{x}{\rho_v(T)} \frac{1-x}{+\rho_L(T)}\right]^{-1}$	$\bar{\rho}_{2\varphi}(T) = \left[\frac{x}{\rho_{\nu}(T)} \frac{1-x}{+\rho_{L}(T)}\right]^{-1}$	$\rho_{L}(T)$	$\rho_{\rm L}({ m T})$
Viscosity (μ_i)	$\bar{\mu}_{2\varphi}(T) = \left[\frac{x}{\mu_v(T)} \frac{1-x}{+\mu_L(T)}\right]^{-1}$	$\overline{\mu}_{2\varphi}(T) = \left[\frac{x}{\mu_v(T)} \frac{1-x}{+\mu_L(T)}\right]^{-1}$	$\mu_{L}(T)$	$\mu_{\rm L}({ m T})$
Length (L _i)	L _{2ϕ,v}	L _{2φ,H}	L _{1φ,ν}	L _{1φ,H}
Diameter (D _i)	$D_{2\phi,v}$	$D_{2\phi,H}$	D _{1φ,ν}	D _{1φ,H}
Velocity (V _i)	$\frac{\dot{m}_{total}}{\bar{\rho}_{2\varphi}(T)\left(\frac{\pi}{4}(D_{2\varphi,v})^2\right)}$	$\frac{\dot{m}_{total}}{\bar{\rho}_{2\varphi}(T)\left(\frac{\pi}{4}(D_{2\varphi,H})^2\right)}$	$\frac{\dot{m}_{total}}{\rho_L(T)\left(\frac{\pi}{4}(D_{1\phi,\nu})^2\right)}$	$\frac{\dot{m}_{total}}{\rho_L(T) \left(\frac{\pi}{4} (D_{1\phi,H})^2\right)}$
Reynolds Number (Re _i)	Homogeneous model; S=1, Avg. 2φ properties		(a (T))VD	(a (T))VD
	$Re_{2\varphi} \!\!=\!\! \frac{\left(\overline{\rho}_{2\varphi}(T)\right)\! V_i D_{2\varphi,v}}{\overline{\mu}_{2\varphi}(T)}$	$Re_{2\phi} \!\!=\!\! \frac{\!\! \left(\overline{\rho}_{2\phi}(T) \right) \!\! V_i D_{2\phi,H}}{\overline{\mu}_{2\phi}(T)}$	$\frac{\left(\rho_L(T)\right)\!V_iD_{1\phi,\nu}}{\mu_L(T)}$	$\frac{\left(\rho_L(T)\right)\!V_iD_{1\phi,H}}{\mu_L(T)}$
Friction Factor (f _i)	$Re_{2\varphi}{<}2300, f_{2\varphi}=64/Re_{tp}, else f_{2\varphi}=0.316 Re_{2\varphi}^{-0.25}$		$Re_{1\phi}$ <2300, $f_{1\phi} = 64/Re_{1\phi}$, else $f_{1\phi}$ =0.316 $Re_{2\phi}$ -0.25	
Pressure gradient (dP/dz _i)	$\begin{split} \frac{dP}{dz_{2\varphi}} &= \left(\Phi_{L0}^2\right) \frac{dP}{dz_{L0}}; \frac{dP}{dz_{L0}} = \frac{f_1\rho_L(T)V_1^2}{2D_{2\varphi,\nu}} \\ \Phi_{L0}^2 &= \left[1 + x \frac{(\rho_L - \rho_V)}{\rho_V}\right] \left[1 + x \frac{(\mu_L - \mu_V)}{\mu_V}\right] \end{split}$		$\frac{dP}{dz}_{Liq.} = \frac{f_i \rho_L(T) V_i^2}{2 D_{1\phi, v}}$	$\frac{dP}{dz}_{Liq.} = \frac{f_i \rho_L(T) V_i^2}{2 D_{1\phi,H}}$

Nanofluid synthesis

- Literature review: graphene/GO nanofluids are suitable working fluids in the loop thermosyphon system
 - Metal/ceramic nanofluids are instable without surfactant
 - Graphene/GO nanofluids have high thermal conductivity, high solar absorbance, high stability, and moderate viscosity increase
- Partially-reduced graphene oxide aqueous nanofluids will be used as the bulk solar absorbing working fluid
 - Absorbing efficiency near 100% over solar wavelength
 - Non-surfactant nanofluid for two-phase stability
- Volumetric boiling of the working fluids
 - Preventing nanoparticle precipitation and agglomeration on a hot surface
 - In-situ boiling of working fluid on the graphene oxide –
 water interface minimizes thermal resistance (large heat
 transfer area)

Typical size of graphene/GO particles

Samples of GO aqueous nanofluids

Summary

- ACT and UMD are developing a Thermosyphon Solar Collection system to provide low-cost solar thermal energy for desalination.
 - Low-cost, reliable passive loop thermosyphon operation
 - Volumetric solar conversion by nanofluid
 - High solar-to-thermal efficiency with low thermal resistance and exergy loss
- Budget: \$1.5M federal + \$375k cost share
 - 10/01/2018 09/30/2021
- Impact
 - Reduced cost of solar heat for desalination etc.
 - Broader freshwater resources from brackish water at acceptable cost
 - Passive loop thermosyphon technology for other heat transfer applications

Questions?