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Project Goal.

Develop an efficient biological approach to convert waste CO, to
hydrocarbon products in a CO,-fixing microbe without photosynthesis, by
leveraging low-cost electricity leading to rewiring a carbon economy

based on CO, valorization.

Goal Statement

— Develop enabling tools to build more durable Clostridium ljungdahlii model

microbe via metabolic engineering

Project Outcome.
Produce 3-hydroxybutyrate (3HB) at a titer of 2 g/L (proof of concept) as well as
acetate co-product from waste CO,, with high carbon-conversion efficiency.
Valorize CO, to 3HB, a high-value chiral building block in the carboxylate
platform with a global carboxylic acid market value of $14.2 billion in 2017.

Relevance

Develop cross-cutting technology to
rewire CO,-a BETO mission.

Help fossil power plants, biofuels,
and manufacturing industries in
reusing their waste CO,

Monetize CO, in a new economy.
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Quad Chart Overview

Barriers addressed

Timeline

» Project start date: 10/1/2017
« Project end date: 9/30/2020
« Percent complete: 45%

Total FY 17 FY 18 Total Planned
Costs  Costs Costs Funding (FY
Pre 19-Project
FY17** End Date)

DOE

OE  $0  $0  $24 $731K

4K
Erolect $O $O $O $O
ost
Share*

ePartners: If multiple DOE recipients are involved in the
project, please list level of involvement, expressed as
percentages of project funding from FY 17-18. [(i.e. NREL
(70%); INL (30%)]-

*Only fill out if applicable. If there are multiple cost-share
partners, separate rows should be used.

**Only fill out if applicable.

Ct-H. Gas Fermentation Development.

— Unique challenges that must be overcome for
gaseous feedstock such as continuous mode
of operation and bioreactor configurations.

Ct-L. Decreasing development time for
industrially relevant microbe

— Develop robust organism via metabolic
engineering to increase rate, titer, yield.

Objectives

Develop a biological approach to valorize
waste CO, to high-value products in a
CO,-fixing non-photosynthetic microbe by
rewiring its carbon metabolic network,

End of Project Goal

Develop a robust microbe to produce 3HB
and acetate from CO, with a 3HB titer of
2 g/L.

The robust CO.-fixing process will help
biofuels industry and industrial processes
to reuse CO, and hence mitigate CO,
emission.



1. Project Overview

History: A BETO Lab Call proposal award started in FY18, using a CO,-fixing non-
photosynthetic microbe to convert CO, to high-value hydrocarbon products.

Goal: Increase the productivity of 3HB from
CO, via C. ljungdahlii organism development.

— Develop enabling tools to afford 3HB
production with high titer/yield
Rationale: 3HB is derived from acetyl-CoA,
the latter a direct product of CO,-fixation

hence with higher electron efficiency.

Merits: High carbon-conversion efficiency
— 82% carbon yield from sugar alone.

— No CO, emission in mixotrophic mode
(sugar + H,).
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WLP: Wood-Ljungdahl Pathway, an energy
efficient CO,-fixation pathway.

Advantage: Developing C. ljungdahlii as the model catalyst for CO,-derived
products will “rewire” and enable a new renewable carbon economy with
high carbon- and energy-conversion efficiency.




2 — Approach (Management)

* Multi-disciplinary team approach recruiting molecular |
biologist, microbiologist, computational modeler,
chemical engineer, and process engineer.

e Research guided by TEA and monitored by Go/No-Go.

* Task 1. Strain Development
— CRISPR genetic tools for metabolic pathway engineering

(Jonathan Lo and Katherine Chou)
— 13C-metabolic flux analysis (Wei Xiong)
— Gas bioreactor fermentation (Lauren Magnusson)

* Task 2. Technoeconomic Analysis (TEA) (Ling Tao)
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2 — Approach (Management)

Interact with teams across the Biochemical Conversion and CO,
Platforms at NREL, ORNL, and industry.

Participate in a multi-lab Agile BioFoundry (ABF) project
teaming with ORNL.

Team with industrial partner Visolis on ABF and DOE SBIR Phase
1 and Phase 2 awards, the latter producing intermediates from
syngas fermentation (+/- sugar) for upgrading.
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2. Approach (Technical)
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Approach: Develop genetic tools, pathway
analysis, metabolic engineering, 13C-
metabolic flux analysis, reactor gas feeding
strategy, and TEA to develop C. ljungdahlii
as the robust host for CO, reuse.

Gas Bioreactor

Test Syngas
Substrates

e Success factors: (1) durable and robust microorganisms; (2) high biological
productivity; and (3) enhanced gas-to-liquid mass transfer —all are critical to
commercial viability.

* Challenges: (1) redox and energy balance for durable microbes; (2) pathway
engineering to boost product titer and yield; and (3) mass transfer - gaseous
substrate requires continuous operation which consumes energy.
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3 — Technical Accomplishment: Developed
CRISPR Genetic Tool
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* Developed CRISPR-Cas9 genome editing tool with high efficiency,
accuracy, and throughput, while leaving no antibiotic marker.

* Generated Apta knockout mutant, aimed to increase flux of acetyl-CoA

toward more 3HB.

 The CRISPR tool is applicable toward “organism development.”
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3 — Technical

4 CO,
Accomplishment: V
3HB Pathway Analyses 2 Acetyl-CoA
Thiol

* Conduct bioinformatics analysis and ofase

evaluate the best options for 3HB pathway: Acetoacetyl-CoA

completed FY18 Q1 Progress Measure. PhaB Hbd

NADPH —, <— NADH

— Evaluate both NADH (more abundant)
route vs. NADPH (less abundant) route; (R)-3HB-CoA (S)-3HB-CoA

— Yet NADPH route yields more ATP. Ptb J'

* Codon-optimized and synthesized 3HB 3HB-P Thioesterase
pathway genes. Buk‘l’—'*

* Construct/express synthetic pathways
using a combinatorial approach with (R)-3HB (S)-3HB
varying promoters/genes/ribosome-
binding sites. PhaB: 3-OH-CoA dehydrogenase

(Ralstonia eutropha)
Comparing/contrasting NADH vs. NADPH Ptb: phosphotransbutyralase (C.
route will guide the decision point to acetobutylicum; Ca)

Buk: butyrate kinase (Ca)
ensure redox and energy balance of the

] o Hbd: 3-OH-CoA dehydrogenase (Ca)
two routes for maximal 3HB productivity. Thiolase: E. coli or Ca origin
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3 — Technical Accomplishment: Produce 3HB from

NADH Pathway

Three genes encoding the NADH-linked 3HB pathway were Competing
expressed and functional in C. ljungdahlii, yielding (S)-3HB. ~ Pathway Mutant
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* Obtain a 3HB titer of 150 mg/L in the transgenic line, completing and exceeding
the FY18 Q4 Milestone technical target of 50 mg/L by 3-fold (Year 1).

» Redirecting flux of acetyl-CoA in Apta mutant led to 345 mg/L of 3HB - a 2.3-fold
increase, which validates metabolic pathway redirection strategy.




3 — Technical Accomplishment: Produce 3HB from

NADPH Pathway

Four genes encoding the NAPDH-linked 3HB pathway were expressed and
functional in C. ljungdahlii, yielding (R)-3HB — FY19 Q1 Progress Measure.
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ATP 4_‘l' Buk during growth on fructose where ATP is not limiting.
* The extra ATP generated in the NADPH-route could be
(R)-3HB crucial for more robust organism under CO,-fixation

condition where ATP is more limiting — Decision Point.



3 — Technical Accomplishment: Develop Tool and Build

Metabolic Flux Map using 13C-tracer Analysis

* Growth in fructose with 13C-bicarbonate, (OD ~ 0.8-1.0)
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* Uncover three additional routes of CO, fixation into metabolic
pathways, in vivo — completed FY18 Q2 Progress Measure.

* New metabolic information will guide genetic engineering strategies.




3 — Technical Accomplishment: H,-enhanced

Carbon Yield during Mixotrophic Growth
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Achieved a carbon yield of 132% when the microbes metabolize sugar and fix

CO, simultaneously using H,.

This high yield surpasses the 66% theoretical maximum carbon yield in most

microbes during glycolysis.

0OD600



3 — Technical Accomplishment: Autotrophic Growth in

H,/CO,orH,/ /CO,

Autotrophy in Syngas H,/CO

Autotrophy in H,/CO, (4:1) (57%:35%) balanced CO,
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Obtain an acetate titer of 2.5 - 6.2 g/L under varying ratio of H,/CO,, completing
and exceeding FY18 Q4 milestone of 1 g/L acetate (Year 1) .

Adding CO leads to more reduced product using ethanol as a proxy (7.2-fold
increase), which guides gas fermentation strategy to tune product profile.
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3-Technical Accomplishment: Preliminary TEA

Designed Conceptual Process Concept
* H, supply system
* Biological H,/CO, conversion

 TEA Outcomes guide
research directions.

* Product purification and balance of * A 3'_'|B mir‘imal Product
plant Selling Price of $2.05/kg was
 Completed FY18 Q3 Progress Measure. projected based on:
Sunlight — A H, cost of $1.57/kg
Hydrogen — 51% CO,-to-3HB carbon
Production efficiency
CONCEP? —3HB Productivity of 0.2
Co, Anaerobic Product g/L/h

Biological Purification

Media )
Conversion

Spent Media,

Biomass Primary cost drivers are H, cost

“ and CAPEX of the biological
conversion step, the latter is the

i Tothe rest of plant

eting Yocling early-stage R/D focus.

duties, water, power
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4 - Relevance

Lowering the cost of waste CO, reuse via developing CO,-relevant
bioenergy technology to rewire the carbon economy.

* Our fuel infrastructure is energy-dense and carbon-based. CO, is the
most abundant carbon feedstock on earth and its innovative reuse
will transform and revolutionize the biofuels industry.

* Directly support BETO’s mission to

—“Develop industrially relevant, transformative, and revolutionary
bioenergy technologies...”

* Directly support BETO’s strategic goal to
—“Enable use of America’s abundant waste resources, i.e., CO, for

advanced biofuels/bioproducts.”

Clostridium
ljungdahlii

* Project success will interface with
various industrial sectors including
fossil power plants, biofuels industry,
and various industrial manufacturing
processes (i.e., iron/steel, cement,
fertilizers) to reuse their waste CO,
and reduce overall cost.




4 - Relevance

BETO MYPP recognizes that “Organism development is an
enabling technology to address research barriers aimed to
decrease development time for industrially relevant CO ,-
fixing microbes.”

* Guided by TEA to “increase biological productivity”, this project focuses
on organism development to achieve targets/milestones as outlined in
the BETO MYPP and is relevant to its “CO, Utilization Technology.”

* Develop a cross-cutting technology to transform a new carbon-based
economy, monetize waste CO,, and better manage carbon footprint,
which collectively will create jobs and stimulate US economy.

Technology Transfer/Marketability:
* Ongoing collaboration with Visolis on two synergistic \
projects: (1) Agile BioFoundry project and (2) DOE SBIR VISOLIS
Phase 1/2 projects. |l
* This early industry engagement will guide R&D directions
and address the needs of industry and market place.

NNNNNN



5 — Future Work: FY19

Go/no-Go (18 mo.) Decision: obtain a 3HB titer of 400 mg/L in C. ljungdahlii
cultured in H,/CO/CO, enriched atmosphere...via deleting carbon- or electron-

competing pathway......

FY19 Q4 Milestone: Obtain a 3HB titer of 800 mg/L in an engineered C.
liungdahlii lacking at least one competing pathway, in an atmosphere enriched in

H,/CO/CO,.

Increase Metabolic Flux from CO, to 3HB

— Compare NADH- vs. NADHPH-linked route in
varying CO/H,/CO, gas compositions.

— Down select best strains
— Conduct 3C-fluxomics to identify bottlenecks
The best strains and growth conditions will

help complete the 18-mo. Go/No-go Decision
and FY19 Q4 Milestone.

Perform TEA

co,

¥ ATP
v @ 1‘;, Acetate

Acetyl-CoA - i
Genes l \ \ t
1,2,3,4 Ethanol

3HB

— Evaluate economic potentials of a variety of products such as acetate, 3HB, etc.

— Rank R&D criteria using inputs from R&D on carbon flux and energy efficiency
potentials, as well as market assessment and environmental benefit potentials.
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5 — Future Work: FY20

FY20 Q4 Milestone: Perform detailed TEA for the integrated concept from CO, to the

down-selected products (acetate or 3HB) including biological conversion, ..report key cost

drivers, integration strategies...and a path forward to achieve cost target of S2/GGE.

* TEA Effort Governing Equation
— Evaluate overall economic

potentials for integrated process | 9H,+4CO,—C,H;0.+ 5H,0

concept 5H2+4C0 —> C4H803 + HZO

— Identify key cost drivers

— Define innovative and relevant
pathways to achieve cost
competitiveness

* Increase Metabolic Flux from CO, to 3HB (2 g/L)
— Down-select the best 3HB strains.

Condition | [H] [C]
Yield | Yield
Anaerobic | 44% | 100%
w/CO 80% | 100%
CO,
|+ Hy/CO
Acetate

— Block additional competing pathways (e.g., Genes 1,
ethanol). 2,3, (4?)

— Conduct 13C-fluxomics to uncover flux

redirections and identify bottlenecks to yield

3HB

v @7/7

— Overexpress key 3HB-pathway genes. Acetyl-CoA

w2 @\

»

¢®

Ethanol

3HB at 2 g/L.
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Overview: Using electricity to power CO, reduction will expand the renewable
energy feedstock portfolio, bypass land-use/water requirement, and kickstart
an economy based on CO, to rewire the carbon cycle.

Approach: C. ljungdahlii is a model non-photosynthetic CO,-fixing microbe
with inherent high carbon- and energy-conversion efficiency, both are
important premises to generate sustainable bioenergy for BETO mission and
industry needs.

Accomplishments:
— Developed CRISPR and generated 3HB strains with a titer of 345 mg/L .
— Generated a metabolic flux map and uncovered new CO,-fixation pathways.

— Adding CO could tune product profiles, which guides gas feeding strategy.

— TEA identified biological conversion step as the key cost driver and focus of early-
stage R&D.

Relevance: Provide an efficient pathway for CO, reuse that will benefit
biofuels, fossil fuels, and manufacturing industries and mitigate CO, emission.

Future work: increase 3HB titers to 2 g/L via metabolic engineering, flux
analysis, and CO,/CO/H, gas feeding, with data input into a TEA to provide a
research path forward to achieve cost target .
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Responses to Previous Reviewers’

Comments

None — this project was not reviewed previously.



Publications, Patents, Presentations,

Awards, and Commercialization

e Patents: filed a Record of Invention (ROI-19-40): Biological
Methanol Condensation to Higher-order Alcohols by
Engineering a Non-photosynthetic C1-troph.

 Commercialization Efforts

— Shell International Exploration & Production awarded NREL
a project (upon their request) entitled “Hybrid CO,
Valorization to High Titer Isopropanol.” This work is in
collaboration with Princeton University to co-develop a
biohybrid approach for CO, upgrade. BETO can leverage
industrial funding and technical progress to accelerate DOE
research.

— Teamed with Visolis and received DOE SBIR Phase | and
Phase Il awards, work for the latter is ongoing.
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