

DOE Bioenergy Technologies Office (BETO) 2019 Project Peer Review 2.1.0.502 Bioeconomy Carbon Flux Assessment – Bioenergy with Carbon Capture and Sequestration

> March 4th-8th, 2019 Analysis and Sustainability Area Review Matthew Langholtz, PhD Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Goal Statement

- Goal: Assess the potential quantity and economic feasibility of CO₂ management of the U.S. bioeconomy through BECCS.
- Outcome: An understanding of the potential scale and economic accessibility of BECCS.
 - Comparable with other CO_2 management strategies.
 - Cost (\$/tonne CO₂)
 - Supply, by feedstock type and logistical strategy
 - Tonnes CO_2 per hectare per year
 - Identify strategies that optimize BECCS (increase Quantity or reduce Price).
 - Position BETO to respond to future bioeconomy applications.

Quad Chart Overview

Timeline

- October 1st 2018
- September 30th 2021
- 10% complete

Barriers addressed

At-A. Analysis to Inform Strategic Direction

At-D. Identifying New Market Opportunities for Bioenergy and Bioproducts

	FY 19 Costs	Total Planned Funding (FY 19- Project End Date)				
DOE Funded	\$500k	\$1.5 million				
Project Cost Share*	\$0	\$0				
Partners: N/A						

Objective

Assess the quantity and feasibility of CO₂ management potential of the U.S. bioeconomy through BECCS.

End of Project Goal

Comprehensive vision of potential to leverage the bioeconomy for BECCS.

1 - Project Overview

• Three of four IPCC illustrative pathways to limit global warming to 1.5°C use BECCS (IPCC 2018).

Breakdown of contributions to global net CO2 emissions in four illustrative model pathways

- Goal: Quantify the supply and cost of CO₂ management potential of the U.S. bioeconomy through BECCS.
- To inform potential future CO₂ management strategies, both BECCS compared to other strategies and optimal BECCS strategies.

2 – Approach (Management)

- Weekly team meetings and regular meetings with BETO Technology Manager and C project at LLNL.
- Multidisciplinary project building on ORNL resources
 - Biomass Analytics developed from the 2016 Billion-ton Report
 - Logistics/transportation modeling
 - NTRC Center for Transportation Analysis www.ornl.gov/ntrc
- Team members:
 - Maggie Davis: Feedstocks resources
 - Olufemi Omitaomu: Siting model, Oak Ridge Siting Analysis for power Generation Expansion (ORNL-SAGE)
 - Melissa Allen: Energy demand
 - Ingrid Bush: Logistics model (BILT)
 - McFarlane: Geological BECCS
 - Costas Tsouris: CO₂ engineering
 - Mike Hilliard: Interactive visualization
 - Matt Langholtz: Pl

– Matt OAK RIDGE National Laboratory

Scenarios: FY19 2nd quarter, FY19 3rd quarter, and Future work:

	Biomass	FY20			
	Conventional	Advanced			
	logistics/existing	logistics/energy	CO ₂ transport		
	feedstocks	crops			
Existing power	Conventional	Advanced	CO ₂ transport		
generation,	biomass logistics	biomass logistics	from existing		
feedstocks	with existing	with existing power	power		
within	power				
sequestration					
basins					
New power	Conventional	Advanced	CO ₂ transport		
generation,	biomass logistics	biomass logistics	from new power		
feedstocks	with new power	with new power			
outside					
sequestration					
basins					

- Modeling approach:
 - 1. <u>Facility siting</u>: Oak Ridge Siting Analysis for power Generation Expansion (OR-SAGE)
 - 2. <u>Biomass feedstocks</u>: 2016 Billion-ton Report for existing feedstocks, and custom regional demand simulations for energy crops
 - 3. <u>Biomass logistics</u>: Biofuel Infrastructure, Logistics and Transportation Model (BILT)
 - 4. <u>CCS engineering costs</u>: Establish cost assumptions
 - 5. <u>CO₂ Lifecycle assessment</u>: BT16 volume 2 and logistics energy use assumptions
- Output: Interactive visualization of scenario results

Examples from https://bioenergykdf.net/ billionton2016/overview :

Facility siting constraints:

Existing OR-SAGE Screening Criteria	Clean Coal Value (750 MWe on 300-acre site)	Large Nuclear Value (1.6 GWe on 500-acre site)	Small Nuclear Value (350 MWe on 50-acre site)	CAES Value (110 MWe on 10-acre site)	Biopower Value (500 MWe on ??-acre site)
Population density (people/sq. mi)	>500 within 20 miles	>500 within 20 miles	>500 within 10 miles	>500	>500 within 1 mile
Wetlands / Open Water					
Protected lands					
Slope	>12% grade	>12% grade	>18% grade	>12% grade	>12% grade
Landslide Hazard (moderate or high)					
100 – year floodplain					
Streamflow / cooling water make-up (k gpm) within 20 miles – assumes closed-cycle cooling - limits plant to no more than 10% of resource	125	200	65	N/A	100 ¹
EPA non-attainment data (ozone and particulates)		N/A	N/A	N/A	
Distance to saline formation	> 150 miles	N/A	N/A	N/A	>150 miles
Access to rail, barge, or road (for proximity to biomass feedstock)	> 20 miles, > 1 mile	N/A	N/A	N/A	> 20 miles, > 1 mile, >100 miles
Carbon pipeline	Availability	N/A	N/A	N/A	Availability

Facility Siting: Oak Ridge Siting Analysis for Power Generation Expansion (OR-SAGE)

- A spatially explicit framework,
 > 40 spatial datasets to identify potential sites.
- For coal, nuclear, solar, wind, and energy storage options.
- Sponsored by EPRI and DOE NE

Facility Siting: Oak Ridge Siting Analysis for Power Generation Expansion (OR-SAGE)

Red dot: current biopower facility

Facility Siting: Oak Ridge Siting Analysis for Power Generation Expansion (OR-SAGE)

Facility Siting: Oak Ridge Siting Analysis for Power Generation Expansion (OR-SAGE)

Biomass feedstocks

Near-term, conventional biomass logistics: Agricultural residues and forestland resources from the 2016-Billion-ton Report.

Long-term, conventional biomass logistics: Regional demand for energy crops.

Long-term, advanced biomass logistics:

National demand for energy crops.

OAK RIDGE National Laboratory 2022 Combined potential supplies at \$60/dt or less, roadside. Forestry: Moderate housing, low energy demand (base). Agriculture: 1% yield increase (BC1). Wastes: All.

2040 Combined potential supplies at \$60/dt or less, roadside. Forestry: Moderate housing, low energy demand (base). Agriculture: 1% yield increase (BC1). Wastes: All.

Biomass Infrastructure Logistics and Transportation (BILT) (Lautala et al 2015):

CO₂ engineering:

- ~80% of the cost of CCS is capture at the power plant. Compression and transportation, injection and storage in geologic formation.
- Existing CO₂ capture technologies and cost models from fossilenergy CCS; mature and emerging technologies applicable to BECCS.
- **Apply bioenergy variables**: biomass properties, flue gas properties, power output.

The amine scrubbing process invented by Bottoms in 1930 (Rochelle, 2009, Science). Besides **absorption by liquid aminebased solvents,** competing emerging technologies include **membrane separation** and **cyclic adsorption**. Current research is driven by the high cost of FE CCS.

3 – Technical Progress, FY19

•Selected scenarios, data inputs, and supply chain assumptions. (Completed)

- •1st Scenario: existing biomass and conventional logistics within sequestration basins. (In progress)
- •Next scenario: **Energy crops** and **advanced biomass logistics systems** within sequestration basins.

•Interactive visualization of net carbon flux for specified feedstocks and supply chain scenarios in terms of \$/ton CO_2 and tons CO_2 /acre.

4 – Relevance

- BECCS is one potential revenue stream for the bioeconomy.
- MYPP: "...determine the impact of competing uses, policy and market demands (e.g., biopower, pellet exports) on feedstock supply and price projections."
- Will need an understanding of cost competitiveness of BECCS vis-à-vis alternative carbon-negative strategies and biomass uses.
- CO₂ quantity and cost potential is expected to vary by:
 - Existing or new power plants
 - Existing biomass resources or new energy crops
 - Conventional or advanced biomass logistics
 - Transporting biomass vs. transporting CO_2

5 – Future Work

- Advanced biomass logistics and energy crops within sequestration basins
- Additional BECCS scenarios
 - 0, <25, and <150 miles from sequestration basins
 - Existing biomass feedstocks vs energy crops
 - Conventional vs advanced feedstock logistics
 - With and without EPA non-attainment areas
- FY20: Transport CO₂ to BECCS from distributed power
- Future: Report and companion landing page with interactive visualization

Summary

- <u>Overview</u>: New project, assessing potential for novel application of the bioeconomy.
- <u>Approach</u>: Leveraging ORNL capabilities in power, engineering, feedstocks, and carbon management.
- <u>Technical progress</u>: Site suitability and feedstocks established for first scenario; subsequent scenarios pending.
- <u>Relevance</u>: BECCS is a potential growth area for the bioeconomy.
- <u>Future work</u>: Add scenarios of energy crops, advanced logistics, and CO₂ pipelines; reporting and visualizations.

Additional Slides

