DBTL Infrastructure

Nathan J. Hillson

Task Lead - DBTL Infrastructure

BETO Peer Review 2019
Conversion Technologies
1:00-1:50PM
March 7, 2019
Denver, CO
Goal Statement – Overall ABF

- **Goal**: Enable biorefineries to achieve 50% reductions in time to bioprocess scale-up as compared to the current average of around 10 years by establishing a distributed Agile BioFoundry that will productionize synthetic biology.

- **Outcomes**: 10X improvement in Design-Build-Test-Learn cycle efficiency, new host organisms, new IP and manufacturing technologies effectively translated to U.S. industry ensuring market transformation.

- **Relevance**: Public infrastructure investment that increases U.S. industrial competitiveness and enables new opportunities for private sector growth and jobs.
Goal Statement – DBTL Infrastructure

• **Goal**: Design, implement, operationalize, and maintain Design/Build/Test/Learn infrastructure as a core component of the Agile BioFoundry that supports other ABF Tasks and enables the overall ABF goal.

• **Outcomes**: 10X improvement in Design-Build-Test-Learn cycle efficiency, new IP and manufacturing technologies demonstrated and ready for translation to U.S. industry.

• **Relevance**: Public infrastructure investment that supports the ABF and other BETO projects, and that can be leveraged by U.S. industry.
Quad Chart Overview

Timeline

• Start: October 1, 2016
• End: September 30, 2019
• 83% complete

Barriers

• Ct-D. Advanced Bioprocess Development
• Ct-L. Decreasing Development Time for Industrially Relevant Microorganisms

Budget

<table>
<thead>
<tr>
<th>Total Costs Pre FY17</th>
<th>FY17 Costs</th>
<th>FY18 Costs</th>
<th>Total Planned Funding (FY19-Project End Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Funded</td>
<td>$823k</td>
<td>$2.3M</td>
<td>$3.2M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$3.9M</td>
</tr>
</tbody>
</table>

Objective

Design, implement, operationalize, and maintain Design/Build/Test/Learn infrastructure as a core component of the Agile BioFoundry that supports other ABF Tasks and enables the overall ABF goal.

End of Project Goals

Demonstrate target/host pair production of at least 3 molecules at 10 g/L, 100 mg/L/hr, at 40% of theoretical yield from DMR-EH at 10 L. Demonstrate value of non-intuitive Learn predictions.
1 - Project Overview
Private investment in product development, scaling, and tailoring to unique pathways and products

Adapted from Lyft
DBTL Infrastructure is Commercially Available or can be Out-Licensed from the ABF
DBTL Infrastructure Will Reduce Time-to-Scale up

- **Years 1-3 (5 hosts)**
 - Molecule X
 - ~10 years, $100M

- **Years 4-6 (20 hosts)**
 - Molecule Y
 - ~8 years, $50M

- **Years 7-9 (100 hosts)**
 - Molecule Z
 - ~5 years, $25M

Time and cost for commercialization
2 – Approach (Management)
Six Tasks for Overall Project

• **Task 1: Design-Build-Test-Learn** (*Nathan Hillson* - lead)
 – Integrate design-build-test-learn cycle with process automation and sample tracking.

• **Task 2: Integrated Analysis** (*Mary Biddy/Thathiana Benavides* – co-leads)
 – Evaluate proposed molecules; develop, update, and improve existing process designs and LCA.

• **Task 3: Host Onboarding** (*Taraka Dale/Adam Guss* – co-leads)
 – Evaluate possible host organisms to determine which on-boarding criteria are not yet met, and fill these gaps through tool development and data collection.

• **Task 4: Process Integration and Scale-up** (*Gregg Beckham/Todd Pray* – co-leads)
 – Standardize, produce, ship, and store hydrolysates; compare clean sugar processes with hydrolysates; test and scale fermentation to improve titer, rate, and yield; provide integrated, bench-scale data for TEA and LCA; scale fermentation to produce data for Learn.

• **Task 5: Industry Engagement** (*Babs Marrone/Chris Johnson/Phil Laible* – co-leads)
 – Identify barriers to industry adoption of synthetic biology technologies, expand number and diversity of industry partnerships, and establish a set of metrics for determining impact of project technologies on industry.

• **Task 6: Management** (*Blake Simmons* - lead)
 – Manage project management, develop internal and external communications, provide deliverables to BETO, and make some capital equipment purchases.
Project Management – Org Chart

BETO Technology Manager
Jay Fitzgerald

Industry Advisory Board

Executive Committee

Task 6
Project Management and Integration
Alastair Robinson (LBNL)
Blake Simmons (LBNL)

Task 5
Industry Engagement and Outreach
Chris Johnson (NREL)
Phil Laible (ANL)
Babs Marrone (LANL)

Task 4
Process Integration and Scaling
Gregg Beckham (NREL)
Todd Pray (LBNL)

Task 3
Host Onboarding
Taraka Dale (LANL)
Adam Guss (ORNL)

Task 2
Integrated Analysis
Mary Biddy (NREL)
Thathiana Benavides (ANL)

Task 1
DBTL
Nathan Hillson (LBNL)

Subtask 1.1
Design
John Gladden (SNL)

Subtask 1.2
Build
Nathan Hillson (LBNL)

Subtask 1.3
Test
Jon Magnusson (PNNL)

Subtask 1.4
Learn
Phil Laible (ANL)
Hector Garcia-Martin (LBNL)

Executive Committee

Industry Partnerships

Task 1
DBTL
Nathan Hillson (LBNL)

Task 2
Integrated Analysis
Mary Biddy (NREL)
Thathiana Benavides (ANL)

Task 3
Host Onboarding
Taraka Dale (LANL)
Adam Guss (ORNL)

Task 4
Process Integration and Scaling
Gregg Beckham (NREL)
Todd Pray (LBNL)

Task 5
Industry Engagement and Outreach
Chris Johnson (NREL)
Phil Laible (ANL)
Babs Marrone (LANL)

Task 6
Project Management and Integration
Alastair Robinson (LBNL)
Blake Simmons (LBNL)

Subtask 1.1
Design
John Gladden (SNL)

Subtask 1.2
Build
Nathan Hillson (LBNL)

Subtask 1.3
Test
Jon Magnusson (PNNL)

Subtask 1.4
Learn
Phil Laible (ANL)
Hector Garcia-Martin (LBNL)
Project Management – Communications

• **ABF is an integrated, geographically distributed multi-Lab team**
 – Effective communications are essential

• **Regular Internal Communications**
 – Bi-weekly Executive Committee meetings
 – Bi-weekly ABF Task Lead meetings
 – Weekly to monthly target/host pair meetings
 – **Weekly software infrastructure user meetings / webinars**
 – Monthly activity reports to BETO Technology Manager
 – Monthly activity summary including DBTL cycle reports to BETO
 – Monthly Industry Outreach and Engagement Task team meetings
 – Quarterly progress / milestone completion reports to BETO
 – **Software infrastructure (e.g. ICE, DIVA, EDD, LabKey, AgileBioCyc, Jupyter, github/bitbucket, etc.)**
 – Sharepoint – file storage and sharing
 – Annual Learn Summit
 – Annual ABF Meeting

• **External Communications**
 – ABF website (agilebiofoundry.org)
 – Social media (@agilebiofoundry)
 – Presentations, posters, booths at domestic and international scientific / technical conferences
 – Publications
 – Quarterly Industry Advisory Board meetings and Industry Listening Days
 – Semi-annual Global BioFoundry Alliance meetings (pending)
2 – Approach (Technical)
DBTL Infrastructure Enables the ABF Approach

- Test
- Putative Targets
- Integration
- Scheduler/LIMS
- Build
- Host On-boarding
- Learn
- Design
- TEA/LCA
- Target Metrics Achieved
- Scale-up: 1-1000 L
- Predictive toolkits
- Targets
What makes ABF different than other BETO-funded metabolic engineering projects?

- The ABF has a variety of teams that work together in a highly collaborative fashion to:
 - Move target / host pairs through the pipeline
 - Build the tools and infrastructure to do so
 - More closely mirror industry in terms of breaking effort into domains (e.g. Test team)

- Learn component

- Infrastructure to support scale / throughput / depth of analysis / Learn

- Integrated whole that might be separated in other projects
 - Including Integrated Analysis (TEA/LCA), Host Onboarding, Scale-up
What are our Technical Risks and Mitigation Plans?

<table>
<thead>
<tr>
<th>Risk</th>
<th>Severity</th>
<th>Description</th>
<th>Mitigation Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designs do not work in selected host</td>
<td>Medium</td>
<td>Promoters / enzymes / pathways / etc. do not function as intended in the selected host.</td>
<td>Further test and learn from lack of function, and suggest design changes that could restore function</td>
</tr>
<tr>
<td>Lack of transferability of between target/hosts</td>
<td>Medium</td>
<td>Not able to leverage past efforts and learnings in one target-host pair for subsequent work in another.</td>
<td>Further learn extents / likelihood of transferability</td>
</tr>
<tr>
<td>Infrastructure operating costs and value</td>
<td>Low</td>
<td>Costs of infrastructure (both hardware and software) maintenance and asset depreciation becomes unsustainable</td>
<td>Where possible, offload maintenance to more cost-effective and sustainable off-the-shelf vendor-supported solutions</td>
</tr>
<tr>
<td>Insufficient data to fully leverage Learn capabilities</td>
<td>Medium</td>
<td>Multi-omics datasets are not of the quality, quantity, or consistency needed for statistical analysis to identify engineering targets that lead to gains in titers, rates, and yields</td>
<td>Explicitly include Learn team Test data consumers during Design process to ensure Learn suitability of generated data</td>
</tr>
</tbody>
</table>
3 – Technical Accomplishments/Progress/Results
• Lyse the sample (if necessary) in water
• Add cold (-20°C) chloroform/methanol (2:1, v/v) to sample in 5:1 ratio over sample volume.
• Let stand on ice for 5 min, vortex
• Centrifuge at 12,000 rpm for 10 min at 4°C
• Collect the upper layer (metabolites)
• Collect the lower layer (lipids)
• Dry the protein interlayer
• Re-solubilize the protein pellet in 8M urea with sonication (add powder urea for typical global digestion)
• BCA assay, add 10mM DTT, incubate 60°C for 30 min
• Digest with trypsin
• C-18 SPE clean-up

Bayesian Inference: Metabolic Kinetics
Kinetic Learning
Metabolic Modeling
Deep Learning

Transcriptomics, Metabolomics, Proteomics, & Lipidomics
• **Automatic Recommendation Tool**
 – A machine learning tool for improving the effectiveness of strain engineering using probabilistic predictive modeling

Agile BioFoundry

+ An Objective

↓

Recommended Designs

Machine learning

Bayesian ensemble modeling

Global optimization through Parallel Tempering

Probabilistic characterization of predictions
Design/Build Highlight – DIVA Software

- **Design Implementation Validation Automation**
 - Software platform that integrates tools for designing and building DNA constructs

- **Recent improvements**
 - Open VectorEditor integration
 - IP and BioSecurity questions
 - Users can now stop j5 runs in progress
 - Users can create their own custom DIVA teams

To the best of my knowledge, the sequences in this design:

- Will not infringe existing intellectual property
- Have not been misappropriated
- Will only be used for research purposes

To the best of my knowledge, the sequences in this design:

- Are not export controlled
- Are not a bio-security risk
- Do not require registration

<table>
<thead>
<tr>
<th>Jennifer Chiniquy</th>
<th>Sequences passed screening by BLISS. Cost estimate is $767.65 (cloning, sequencing). The project ID should be provided by the PI. Note that the cost may be adjusted for troubleshooting. PIs provide necessary templates. Ex: False, Sec: False, Reg: False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samuel Coradetti</td>
<td>Dropped one problematic sequence IP: True, Mis: True, Res: True</td>
</tr>
</tbody>
</table>
Build Highlight – DNA sequence validation

• Overview
 – $8 per sample (full amplicon/plasmid coverage, no oligos required)
 – Sample types: boiled cell culture, mini-prepped plasmid, PCR amplicon
 – 384 samples per week (1536 samples per week by end of March 2019)

• Machine learning-enabled sample loading software tool
 – Predict sample loading amount that will maximize sequencing reads (i.e., optimize MiSeq cluster density)

DNA input Nextera preparation MiSeq sequencing Alignment analysis
Build/Test Highlight – EASy

- **Evolution by Amplification and Synthetic biology**
 - Method developed by ABF collaborator Ellen Neidle (Tumen-Velasquez et al. *PNAS* 2018)
 - Can be applied to different target/host pairs, in combination with selection or screening
 - ABF is developing strategies to accelerate and improve the process
Test Highlight – Multi-omics Analysis

- **Single-sample Metabolite, Protein and Lipid Extraction**
 - Now used at the ABF

<table>
<thead>
<tr>
<th>Host</th>
<th>Proteomics (global + targeted)</th>
<th>Metabolomics/Lipidomics (Intra/Extracellular)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. putida</td>
<td>>300 datasets</td>
<td>>500 datasets</td>
</tr>
<tr>
<td>A. pseudotereus</td>
<td>>250 datasets</td>
<td>>450 datasets</td>
</tr>
<tr>
<td>R. toruloides</td>
<td>>250 datasets</td>
<td>>300 datasets</td>
</tr>
</tbody>
</table>
Test Highlight – Preliminary Targeted Proteomics Data Quality Assessment Efforts

<table>
<thead>
<tr>
<th>Build</th>
<th>Cell Culture (Biolector)</th>
<th>Automated Sample Preparation (Biomek)</th>
<th>Proteomic Data Acquisition</th>
<th>EDD</th>
<th>Analysis</th>
</tr>
</thead>
</table>

- **Engineered strains**: 57
- **Biological replicates**: 3
- **BioLector batches**: 4
- **QQQ instruments**: 2
- **Technical replicates**: 5
- **Total Samples**: >2000

Error Contributions

- **Batch error**: 4.0%
- **Bioreplicate error**: 5.5%
- **Instrument error**: 7.2%
- **Sample prep. error**: 9.2%

Coefficient of Variation Distribution (Protein Area)

- **UHPLC-QqQ - A**
- **UHPLC-QqQ - B**
Test Highlight – Biosensors and Cytometry

- **Structure-based design to shift muconate biosensor dynamic range**
 - An engineered *P. putida* strain can import and bioconvert protocatechuate to muconate
 - CatM transcription factor activity is modulated through muconate binding
 - FACS positive/negative selection identified C2 catM promoter variant as starting point for gfp expression
 - FACS identified CatM mutant that shifts muconate-sensing dynamic range as desired

Graph:
- **Legend:**
 - Blue circles: CatM_C2
 - Green squares: CatM_C2.9

X-axis: protocatechuate (mM)
- 0.0015, 0.015, 0.15, 1.5, 15

Y-axis: Cell fluorescence (au)
- 0, 5000, 10000, 15000, 20000, 25000, 30000
Test Highlight – Biosensors and Microfluidics

• **FRET Biosensors:**
 – Rapid, real-time signal response
 – Follow metabolic or catabolic (conversion) processes
 – Adaptable to a wide range of targets
 – Ratiometric signal is independent of sensor concentration

• **Enzyme-linked biosensors:**
 – TF sensors with >100-fold increase in signal to noise

• Diverse experimental approaches:
 – In vitro measurements
 ![Titration of biosensor with cis,cis-muconate](image)
 – In vivo measurements
 ![Images of *P. putida* expressing biosensors](image)
 ![Biosensor-containing droplets sorted by muconate concentration](image)
 – Detection in microfluidic droplets

© 2016-2019 Agile BioFoundry
Test Highlight – LabKey Software

- Raw process, assay, and sample data and metadata from Test activities
 - May additionally be channeled into the ABF data ecosystem via LabKey
Test/Learn Highlight – EDD Software

- **Experiment Data Depot**
 - Software platform repository for actionable biological datasets and metadata

- **Recent improvements**
 - Designed replacement import process, targeted proteomics beta test
 - PubChem-based Metabolomics pipeline implemented and tested
 - Initial transcriptomics pipeline (beta)
 - Streamlined study creation
 - Support for larger file imports
 - Browser & email notifications for long-running tasks (e.g. import)
 - Added metadata types for use by PNNL, NREL, ABPDU
 - REST API for data export / search (e.g. from Jupyter)
 - Python 3 migration – long-term maintainability
 - Many minor improvements & bug fixes
Learn Highlight – Metabolic network reconstruction and modeling

- AgileBioCyc Pathway/Genome Database (cyc.agilebiofoundry.org)

- Metabolic model building using BiGG Models and openCOBRA
 - High quality metabolic models with gene association
 - Orthologous gene mapping from OrthoMCL
 - Metabolic map building and omics data visualization

- Experimental validation and refinement
 - Biomass composition and ATP-maintenance
 - Growth phenotyping and gene essentiality analysis
Learn Highlight – Bayesian inference of metabolic kinetics from multi-omics data

- Infer probabilistic relationship between variables we can control (enzyme expression; media composition) and those we cannot (intracellular fluxes and metabolomics)

- Finds parameters for kinetic model that reproduces observed steady-state data
- Distributions in Flux control coefficients (FCCs) can be found to determine which enzymes to over/under-express to achieve a desired metabolic phenotype

- Method can be scaled to genome-scale models and multi-omics datasets (right)
- The resulting model offers predictions that are more mechanistic than black-box approaches
Learn Highlight – Kinetic Learning

- **Additional New Machine Learning Technique**
 - A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data
Learn Highlight – Deep Learning

- **Integrated AI subsystems for Deep Learning in Biomanufacturing**
 - An ecosystem of learn models for continuous data collection and integration
 - Outcome: An integrated layering of modules where output of one is input of next
 - Ongoing: Required complexity and inter-lab coordination being established
Highlighted FY17/18 ABF Milestones relied upon DBTL Infrastructure

FY17 Annual SMART milestone
- Demonstrate the Agile BioFoundry process by successfully completing one or more Design, Build, Test, Learn cycles for 5 molecules in their designated onboarded hosts, hitting baseline titers of 100 mg/L in mock or DMR-EH hydrolysate for at least 2 molecules.

Go/No-Go Decision, Q2 FY18
- Demonstrate process integration and scaling in 2 L bioreactors in DMR-EH hydrolysate using a target molecule introduced into the BioFoundry in FY17 with a target titer of at least 1 g/L.

FY18 Annual SMART milestone
- From a set of 10 target molecules, demonstrate successful production of 40% with titers for FY18 target molecules of at least 100 mg/L in mock or DMR-EH hydrolysate, and titers for FY17 target molecules of at least 500 mg/L in DMR-EH hydrolysate.
FY19 Milestones Completed

<table>
<thead>
<tr>
<th>Milestone (synopsis)</th>
<th>Task</th>
<th>FY19 Quarter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selections of new target molecule & existing molecule in different host</td>
<td>Target/Host</td>
<td>Q1</td>
<td>Quarterly (Regular)</td>
</tr>
<tr>
<td>4X Build sequence validation capacity increase from FY18 to FY19</td>
<td>DBTL Infrastructure</td>
<td>Q2</td>
<td>Quarterly (Regular)</td>
</tr>
<tr>
<td>TEA and LCA on new FY19 target molecule</td>
<td>Integrated Analysis</td>
<td>Q2</td>
<td>Quarterly (Regular)</td>
</tr>
<tr>
<td>Deep Learning non-intuitive predictions</td>
<td>DBTL Infrastructure</td>
<td>Q2</td>
<td>Quarterly (Regular)</td>
</tr>
<tr>
<td>Titer goals in range of 1 to 10 g/L</td>
<td>Target/Host</td>
<td>Q3</td>
<td>Quarterly (Regular)</td>
</tr>
<tr>
<td>Transformation in new organism(s)</td>
<td>Host Onboarding</td>
<td>Q3</td>
<td>Quarterly (Regular)</td>
</tr>
<tr>
<td>5X Test capacity increase from FY17 to FY19</td>
<td>DBTL Infrastructure</td>
<td>Q3</td>
<td>Quarterly (Regular)</td>
</tr>
<tr>
<td>Promoters in new SOT organisms</td>
<td>Host Onboarding</td>
<td>Q4</td>
<td>Annual (Regular)</td>
</tr>
<tr>
<td>10L scale using DMR-EH hydrolysate, with 10 g/L, 100 mg/L/h, 40% yield</td>
<td>Process Integration & Scaling</td>
<td>Q4</td>
<td>Annual (Regular)</td>
</tr>
<tr>
<td>SWOT Analysis</td>
<td>Industry Engagement & Outreach</td>
<td>Q4</td>
<td>Annual (Regular)</td>
</tr>
<tr>
<td>DBTL Activity, Quarterly/Milestone, and final AOP reports sent to BETO. Updates to ABF website</td>
<td>Management</td>
<td>Q4</td>
<td>Annual (Regular)</td>
</tr>
<tr>
<td>Value of non-intuitive Learn predictions demonstrated</td>
<td>Target/Host</td>
<td>Q4</td>
<td>Go/No-Go</td>
</tr>
</tbody>
</table>
4 – Relevance
Relevant Outcomes

• 50% reduction in time-to-scale up compared to the average of ~10 years

• 10X improvement in Design-Build-Test-Learn cycle efficiency

• Public infrastructure investment that increases U.S. industrial competitiveness and enables new opportunities for private sector growth and jobs

• New IP and manufacturing technologies effectively translated to U.S. industry ensuring market transformation

• New industrially relevant, optimized chassis organisms for fuel and chemical production
The Agile BioFoundry is complementary to BETO’s other projects

• BETO’s projects frequently target specific molecules/hosts

• In contrast, the Agile BioFoundry is a broadly enabling platform
 – Applicable across biorefinery fuel or chemical production processes
 – Other BETO projects could leverage Agile BioFoundry capabilities
 • Methods, workflows, instrumentation, software, expertise
 • Accumulated enzyme/pathway/host/process learnings and data

• Agile BioFoundry development/assessment through several use cases
 – Sufficient number/diversity of molecules/hosts to demonstrate broad utility
Connections to other BETO projects

• Other BETO consortia
 – Continue to integrate TEA/LCA support across consortia
 – Closer collaborations to further inform the DBTL cycle
 – ChemCatBio: catalytically convert ABF molecules into value-added compounds
 – SepCon: secreted hydrophobic, acid, and intracellular products recovery
 – FCIC: understanding the effect of feedstock variability on strain robustness
 – Performance-Advantaged BioProducts: ABF molecules could be used

• BETO State Of Technology (SOT)
 – Improve genetic tools for SOT organisms to accelerate & increase DBTL cycle efficiency

• Application of Energy I-Corp Learnings:
 – Better Utilization of Real-time Data for in-line process Control
 – Predictive Scale-Up studies in lab-scale bioreactors
ABF and other DOE programs

• Complementary ABF domain expertise, infrastructure, and operational TRL range offer opportunities for synergy with other DOE programs

• The ABF is open to working with other DOE funded projects and centers, such as the BRCs and EFRCs

 – Target/host suggestions for ABF
 • Scientists can propose biofuel and bioproduct targets for the ABF to work on and further optimize

 – Technology off-ramping into ABF
 • Early stage DBTL infrastructure (e.g. software, devices, methods) and microbial hosts can be brought into the ABF and further developed and operationalized

 – Shared technical challenges collaboratively addressed
 • Example: experiment data storage and dissemination – EDD co-development
 • Resulting resources made accessible across projects – *P. putida* mutant libraries

 – Provide compelling examples of DOE teams working together
 • Across TRLs and bridging the gap between fundamental and applied science and technology

 – Enhance technology transfer and commercialization efforts
Working with Industry: FY17 Direct-Funded Opportunities and FY18 BEEPS FOAs

• **Poster Session (Tuesday March 5)**
 – Will include presentations on the ABF DFO projects (be sure not to miss them!)

• **Process and Management**
 – Will be discussed in ABF Directed Funding Opportunities and Partnerships presentation

• **Why these projects and BETO investments are so important**
 – Expand the range of ABF targets and hosts
 – *Stress-test ABF capabilities and identify weaknesses and opportunities*
 – Bring new technologies in to the ABF and opportunities to license ABF technology out
 – Early stage investments that will be crucial to the ABF accomplishing its overall goal and its desired outcomes (many relate directly to industry impact and technology transfer)
 – Ensure that ABF development is responsive to industry
 – Increase industry exposure (beyond funded companies) to the ABF and its capabilities
 – Quantitatively demonstrate industry interest in leveraging the ABF

• **New for FY19: template ABF CRADA**
 – Publicly accessible from the ABF website: https://agilebiofoundry.org/work-with-us/
 – Non-negotiable for projects receiving DOE funding
 – Includes new “Extended Non-Exclusive Option” IP model
CORRECTING and REPLACING – Lygos Partners with Agile BioFoundry and U.S. Department of Energy to Accelerate BioProduct R&D and Commercialization

Two-year, $1.43 million pilot collaboration to automate microbial engineering research technology

In a release issued under the same headline on October 17th by Lygos, Inc., please note that the subheadline contained an incorrect value for the pilot collaboration and that a quote from John Gladden of Sandia National Laboratories was not included. These have been corrected below, and a new description of Agile BioFoundry has also been included. The corrected release follows:

BERKELEY, Calif., Oct. 20, 2017 (GLOBE NEWSWIRE) -- Lygos, a leading innovator in the development of sustainable high-value specialty chemicals, announced today that the U.S. Department of Energy is providing multi-year funding for Lygos’ collaboration with the Agile BioFoundry (ABF) to automate research technology. Lygos’ pilot collaboration is part of a two-year, $5 million, multi-company effort coordinated by the ABF.

“This DOE funding underscores the importance of our work with the Agile BioFoundry,” said Jeffrey Dietrich, Lygos’ Chief Technology Officer. “Harnessing the power of microbes to produce important chemicals requires a less expensive, faster engineering cycle as well as new technologies to more effectively interrogate microbe performance. By pairing Lygos’ expertise designing, building, and optimizing pathways with the ABF’s capabilities in advanced automation we’ll be able to dramatically decrease the time required to commercialize new microbial products.”

total of $1.43M in funding over two years, $1M of which the DOE will provide for work on the project at the ABF and the remainder to be provided by Lygos in support of its in-house R&D.

“A primary goal of the ABF is to accelerate bioprocess development and deployment into the market to enable rapid growth of the bioeconomy,” said John Gladden of ABF consortium member Sandia National Laboratories, “and this opportunity to work closely with industry partners like Lygos helps demonstrate the real-world impact of the ABF while providing the ABF invaluable feedback, laying the groundwork for future ABF partnerships with industry and other interested parties, especially as companies like Lygos bring products to market more rapidly because of collaborations like this.”

“We’re impressed with the capabilities, expertise, and elite staff at the Agile BioFoundry, and we’re excited about increasing the power of our research to create more products and serve more customers,” said Eric Steen, CEO, Lygos. “The past five years have seen revolutionary reductions in the time and cost of engineering biology. Working with the ABF, I think we can do even more over the next five years.”
5 – Future Work
How we are thinking about our future work

• We have a long term strategic vision for the ABF DBTL Infrastructure

• Our future work will focus on the technical and operational barriers to achieving the overall ABF goal and its desired outcomes

• Some challenges facing the ABF:
 – Show Learn can add value through non-intuitive predictions
 – Demonstrate industry-relevant ABF competencies across targets and hosts
 – Onboard new hosts and develop tools for them
 – Increase DBTL cycle capacities and efficiencies; reduce cycle time
 – Keep current strength / weakness / opportunities / threat (SWOT) assessments
 – Demonstrate reproducible geographically distributed unit operations
 – Find sustainable ABF IP / licensing / contracting model(s)
 – Demonstrate that past work and Learnings increase the efficiency of new work

• Next slides show our current planned FY19 activities
 – DBTL Infrastructure contributions to FY19 and pending FY20-22 milestones then follow
Design Highlight – ART Software

• **Automatic Recommendation Tool**
 – A machine learning tool for improving the effectiveness of strain engineering

• **Next steps**
 – Development of testing modules
 – Web interface
 – Command-line execution
 – Docker container execution

 – Extension for classification problems; discrete/categorical input variables
 – Incorporation of cost constraints into objective function
 – Using ART’s predictions for optimal media additions to DMR for FOH production in *R. toruloides*
Design/Build Highlight – DIVA Software

• **Design Implementation Validation Automation**
 – Software platform that integrates tools for designing and building DNA constructs

• **Next steps**
 – Public DIVA server (https://public-diva.agilebiofoundry.org)
 – Web of DIVAs
 – BLiSS integration
Build Highlight – DNA sequence validation

• Next steps
 – Automatically update DNA sequences to match MiSeq data, annotating deviations from intended sequences
 – Embed IGV genome browser within ICE Registry Platform to visualize sequencing data
 – Automated analysis pipeline: alignments, variant calling, de novo assemblies
Build/Test Highlight – EASy

• Next steps
 – Combine EASy with fluorescence-activated cell sorting and biosensors (ABF-Neidle lab CRADA)
 – Accelerate EASy with mutant DNA libraries for fast screening of beneficial mutations
Test Highlight – Multi-omics analyses

- Global and Targeted Proteomics
 - Addition of isotopically heavy peptides for more targeted proteomics
 - Close to absolute quantitation for these target protein/peptides
 - Data quality performance metrics and a confidence metric for direct comparisons across all datasets, with more statistical power
 - Automation of pipeline for fast analysis

- Metabolomics and 13C metabolic flux analysis
 - Increase of detection coverage with addition of new chemical standards
 - Improvement of metabolic models of target hosts
 - Faster and accurate QA/QC on metabolite identification by improvement of workflow
Test Highlight – Targeted Proteomics Data Quality Assessment and Improvement

• Next steps
 – Identify and eliminate sources of error in cell culture, sample preparation, and data acquisition workflows

 – With the Learn team, establish data quality metrics for proteomic and metabolomic workflows

 – Extend automated sample preparation to new ABF host organisms
Test Highlight – Biosensors

Biosensor frameworks for strain engineering and pathway optimization
- Versatile platforms for rapid generation of transcription-factor-based and FRET biosensors
- Useful for a range of products and metabolic intermediates of new targets and host pairs of the ABF

TF biosensors for strain optimization
- Reports on *in vivo* metabolic activity
- Can be tuned for different target concentrations
- Coupled to flow cytometry for rapid isolation of top performers.

Expansion of the suite of FRET-based ligand reporting systems
- Tailored ligand binding protein for biocatalyst engineering
- Tailored FP pair driven by application

Next steps
- Expansion of ligand-sensing domains
- Miniaturization of screening methodologies for sensor optimization
- Broad host utility and adaptations for new hosts
- Interface with Test and Learn infrastructures
- Continued optimization of cytometric and microfluidic strategies for high-throughput *in vitro* and *in vivo* screening using transcription factor and FRET-based biosensors
Test Highlight – LabKey Software

• EDD – LabKey Data Integration
 – Bioreactor data and metadata held in LabKey may be easily downloaded into CSV format for uploading into EDD
 – LabKey Python API may also be used to directly access datasets within LabKey
Test/Learn Highlight – EDD Software

• **Experiment Data Depot**
 – Software platform repository for actionable biological datasets and metadata

• **Next steps**
 – Improve performance – larger datasets, efficient exports, & faster development cycle
 – Complete import redesign by integrating additional workflows
 – Improve metadata tracking to support ABF use cases
 – Productionize transcriptomics pipeline
 – Implement a global proteomics workflow, including LabKey
 – Work with industry partner to integrate support for ABF use cases
 – Improve test coverage and reliability for mature workflows
Learn Highlight – Metabolic network reconstruction and modeling

• Next steps
 – Multi-omics data integration using metabolic model
 – Develop and improve methods to characterize the metabolic state from data
 – Develop and improve methods to identify non-intuitive engineering strategies
Learn Highlight – Bayesian inference of metabolic kinetics from multi-omics data

• Next steps
 – Inferring intracellular flux is the most challenging omics-level data to collect: rigorous benchmarks are needed on ABF-generated data with sparser flux measurements
 – Incorporate thermodynamic constraints on flux and metabolite concentrations; improve uncertainty quantification on larger datasets
 – Include direct transcriptional regulation as an additional layer when transcriptomic measurements are available
 – Develop visualization methods and incorporate tool with easy-to-use interface in the ABF DBTL software stack
Learn Highlight – Kinetic Learning

• A machine learning approach to predict metabolic pathway dynamics from time-series multi-omics data

• Next steps

 – Collaborate with Lygos to learn the dynamics of organic acid-producing strains of *Pichia kudriavzevii* with the goal of improving industrial production.

 – Learn dynamics and improve titers of bisabolene-producing strains of *R. toruloides*.
Learn Highlight - Continuous Model Evolution

Expanded process

- Train ‘Second Generation’ AI models, building on those generated from initial AI-guided studies
- Continue to steer design of individual experiments to maximize opportunity for AI refinement
- Expand and integrate AI models into ABF ecosystem

Experimental data (1-6) used to train AI module

<table>
<thead>
<tr>
<th>Obs A</th>
<th>Exp1</th>
<th>Exp2</th>
<th>Exp3</th>
<th>Exp4</th>
<th>Exp5</th>
<th>Exp6</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Obs B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Obs C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Obs D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>9</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Obs E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Obs F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Obs G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Obs H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

New data is added to prior data and model is retrained, improving model and enabling new predictions

<table>
<thead>
<tr>
<th>Exp7</th>
<th>Exp8</th>
<th>Exp9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Obs A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Obs B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Obs C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Obs D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Obs E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Obs F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Obs G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Obs H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(DBTL) FY19 Milestones To Be Completed

<table>
<thead>
<tr>
<th>Milestone (synopsis)</th>
<th>Task</th>
<th>FY19 Quarter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selections of new target molecule & existing molecule in different host</td>
<td>Target/Host</td>
<td>Q1</td>
<td>Quarterly (Regular)</td>
</tr>
<tr>
<td>4X Build sequence validation capacity increase from FY18 to FY19</td>
<td>DBTL Infrastructure</td>
<td>Q2</td>
<td>Quarterly (Regular)</td>
</tr>
<tr>
<td>TEA and LCA on new FY19 target molecule</td>
<td>Integrated Analysis</td>
<td>Q2</td>
<td>Quarterly (Regular)</td>
</tr>
<tr>
<td>Deep Learning non-intuitive predictions</td>
<td>DBTL Infrastructure</td>
<td>Q2</td>
<td>Quarterly (Regular)</td>
</tr>
<tr>
<td>Titer goals in range of 1 to 10 g/L</td>
<td>Target/Host</td>
<td>Q3</td>
<td>Quarterly (Regular)</td>
</tr>
<tr>
<td>Transformation in new organism(s)</td>
<td>Host Onboarding</td>
<td>Q3</td>
<td>Quarterly (Regular)</td>
</tr>
<tr>
<td>5X Test capacity increase from FY17 to FY19</td>
<td>DBTL Infrastructure</td>
<td>Q3</td>
<td>Quarterly (Regular)</td>
</tr>
<tr>
<td>Promoters in new SOT organisms</td>
<td>Host Onboarding</td>
<td>Q4</td>
<td>Annual (Regular)</td>
</tr>
<tr>
<td>10L scale using DMR-EH hydrolysate, with 10 g/L, 100 mg/L/h, 40% yield</td>
<td>Process Integration & Scaling</td>
<td>Q4</td>
<td>Annual (Regular)</td>
</tr>
<tr>
<td>SWOT Analysis</td>
<td>Industry Engagement & Outreach</td>
<td>Q4</td>
<td>Annual (Regular)</td>
</tr>
<tr>
<td>DBTL Activity, Quarterly/Milestone, and final AOP reports sent to BETO. Updates to ABF website</td>
<td>Management</td>
<td>Q4</td>
<td>Annual (Regular)</td>
</tr>
<tr>
<td>Value of non-intuitive Learn predictions demonstrated</td>
<td>Target/Host</td>
<td>Q4</td>
<td>Go/No-Go</td>
</tr>
</tbody>
</table>
Pending FY20-22 Milestones

• We will put our plans into our FY20-22 AOP proposal.
 – The following milestones are proposed (will undergo merit review)

• FY20 Annual Smart
 – Reproducibility of 3 distributed Test unit operations including bioreactor scale-up quantified through comparison of results post data quality assurance for on-site vs. off-site sample analysis.

 or,

 – Statistics gathered and Industry partner decision making processes analyzed for choice between traditional (exclusive license, shorter option period) and alternative (non-exclusive, longer option period) CRADA IP model that retains incentives for industry yet enables ABF to learn and leverage past experience.

• Go/No-Go Decision, Q2 FY21
 – 5 target molecules / tools transferred between host organisms and efficiency gains over prior host organisms assessed

• FY22 Annual Smart
 – 5X efficiency improvement in DBTL engineering cycle demonstrated compared to FY19 baseline and 20 host organisms on-boarded to tier 1 or above
Summary – Overall ABF

• **Goal**: Enable biorefineries to achieve 50% reductions in time to bioprocess scale-up as compared to the current average of around 10 years by establishing a distributed Agile BioFoundry that will productionize synthetic biology.

• **Outcomes**: 10X improvement in Design-Build-Test-Learn cycle efficiency, new host organisms, new IP and manufacturing technologies effectively translated to U.S. industry ensuring market transformation.

• **Relevance**: Public infrastructure investment that increases U.S. industrial competitiveness and enables new opportunities for private sector growth and jobs.
Summary – DBTL Infrastructure

• **Goal**: Design, implement, operationalize, and maintain Design/Build/Test/Learn infrastructure as a core component of the Agile BioFoundry that supports other ABF Tasks and enables the overall ABF goal.

• **Outcomes**: 10X improvement in Design-Build-Test-Learn cycle efficiency, new IP and manufacturing technologies demonstrated and ready for translation to U.S. industry.

• **Relevance**: Public infrastructure investment that supports the ABF and other BETO projects, and that can be leveraged by U.S. industry.
Acknowledgements

• Gyorgy Babnigg
• Gregg Beckham
• Thathiana Benavides Gallego
• Mary Biddy
• Kristin Burnum-Johnson
• Jennifer Chiniquy
• Jim Collett
• Zak Costello
• Taraka Dale
• Dayna Daubaras
• Jay Fitzgerald
• Mark Forrer
• Hector Garcia Martin
• John Gladden
• Adam Gus
• Ramesh Jha
• Christopher Johnson
• JoonHoon Kim
• Young-Mo Kim
• Phil Laible
• Peter Larsen
• Jon Magnuson
• Babs Marrone
• Isabel Pardo Mendoza
• Chris Petzold
• Hector Plahar
• Todd Pray
• Tijana Radivojevic
• Alastair Robinson
• Davinia Salvachua
• Blake Simmons
• Peter St. John
• Deepti Tanjore
• Rosemarie Wilton
Additional Slides
Responses to Previous Reviewers’ Comments

• Weaknesses include geographic separation
 – As a distributed effort, we clearly have faced operational challenges, although these have more than been made up for by the Agile BioFoundry’s ability to leverage physical and human resources across distributed national laboratories. The Agile BioFoundry’s program manager, together with regular communications across the consortium (via teleconferences, webinars, informatics servers, SharePoint, annual in-person meetings), have helped mitigate communications risks. Sample transfer risks (i.e., sample stability, sample loss) will continue to be assessed through local/proximal compared with remote sample analysis, and to date we have not suffered from any notable sample losses. We are continuing to make progress in addressing disconnects in technology adoption, and it continues to be an operational imperative to standardize workflows and data-exchange formats wherever possible.

• Do not yet have a compelling argument as to why and how their approach will be better than other potential approaches to the problem
 – What sets the Agile BioFoundry apart from other foundries is that we develop and distribute publicly available tools, methods, and strains aimed at broadly benefiting the biofuels and bioproducts industry. Whereas private foundries are incentivized to develop proprietary tools and organisms, the Agile BioFoundry is a publicly funded effort aimed at delivering technology that will enable industry to either leverage our resources through partnership or adopt our methodologies for developing bioproducts. In comparison to the publicly funded Defense Advanced Research Projects Agency Living Foundries program, there are distinct programmatic and technical differences between the aims of the two efforts. Where the Living Foundries program is primarily focused on developing biological pathways to materials that cannot be achieved through transformations of petroleum feedstocks, the Agile BioFoundry is focused developing biological pathways for producing advanced biofuels and renewable, high-volume chemicals.
Responses to Previous Reviewers’ Comments (cont.)

• Rationale for their choice of product targets needs to be strengthened
 – The Agile BioFoundry is pursuing multiple target/hosts to demonstrate that the methods, software, and technologies can be productively applied across product classes. The process and rationale for selecting the three target/hosts pairs for FY 2017 (and the 15 pairs initially prioritized for FY 2017 – FY 2019) was described during the 2017 Peer Review, and the details were provided to BETO. For our FY 2018 and FY 2019 target/host selection processes, in addition to quantitative technical assessments across multiple categories (TEA and Market, LCA, Strategic Value, Scientific Novelty, DOE Relevance, How Designable, How Buildable, How Hostable, How Testable, How Scalable, and Chemical and Biological Safety), we proactively consulted with the Agile BioFoundry Industry Advisory Board to ensure that our prioritized targets and hosts remain aligned with industry’s needs.

• Isn’t clear that reducing the cycle time to, say, adipic acid, would be generally applicable to other material
 – As will be / has been presented in the Target/Host ABF presentations at the 2019 Peer Review, we have started to diligently measure cycle times across targets and hosts. This is the pre-requisite step to measuring improvements in (i.e., reductions to) cycle time. It should be noted that we are now pursuing multiple targets in the same host (which could suggest how cycle times for the second target have benefitted from improvements for the first target) and the same target in multiple hosts (which could suggest how cycle times in the second host have benefitted from improvements for the first host). While the former is more directly relevant for this previous reviewer’s comment, both are important to capture and understand as they both directly affect the Agile BioFoundry’s ability to broadly accelerate biomanufacturing process development across targets and hosts.
• More emphasis should be placed on the performance gap between small-scale culturing and bench-scale fermentation, which is a well-known problem in the field
 – We recognize that there are challenges associated with each increase in process scale, including the transition from high-throughput, small-scale culturing to bench-scale fermentation. Agile BioFoundry workflows leverage design of experiments and small-scale culture to select strains to grow in bench-scale bioreactors. Bench-scale fermentation provides critical data for the “Learn” component of Design-Build-Test-Learn, both to inform future designs and to develop predictive models that may be applied to small-scale experiments. Agile BioFoundry facilities have recently procured Robo/Biolector(Pro) and Ambr250 instrumentation which both serve to bridge the gap between small-scale culturing and bench-scale fermentation.

• PI is encouraged to look deeply into high-throughput fermentation techniques mastered by enzymes and biobased chemicals and fuels companies
 – As mentioned above, towards adopting the techniques practiced and mastered by companies, Agile BioFoundry facilities have recently procured Robo/Biolector(Pro) and Ambr250 high-throughput fermentation instrumentation.

• Encourage the PI to form a strong liaison between fermentation and the high-throughput team
 – There are strong connections between Agile BioFoundry high-throughput and bio-reactor fermentation teams, with staff shared in common between them.
Publications, Patents, Presentations, Awards, and Commercialization

Publications

Publications, Patents, Presentations, Awards, and Commercialization (cont.)

Publications (cont.)

Presentations
• Gregg Beckham, Hybrid biological and catalytic processes to manufacture and recycle plastics, Princeton University, November 28th, 2018
• Garcia Martin, H. “Towards a predictive synthetic biology enabled by machine learning and automation”. Ginkgo Bioworks, Boston, MA, November 12, 2018
• Nathan J. Hillson. “DIVA (DNA Design, Implementation, Validation Automation) Platform”. Invited Talk, 2nd Darmstadt RoboWorkshop, Darmstadt, Germany, November 8, 2018
• Nathan J. Hillson. “Recent developments at the U.S Department of Energy Agile BioFoundry”. Invited Talk, 2nd Darmstadt RoboWorkshop, Darmstadt, Germany, November 7, 2018
• Garcia Martin, H. “Towards a predictive synthetic biology enabled by machine learning and automation”. AIChE annual meeting, Pittsburgh, PA, October 31 2018
• Garcia Martin, H. “Towards a predictive synthetic biology enabled by machine learning and automation”. Thermo Fisher, San Jose, CA, October 19, 2018
• Garcia Martin, H. “Towards a predictive synthetic biology enabled by machine learning and automation”. DTRA Tech Watch, Ft. Belvoir, VA, October 10, 2018
• Nathan J. Hillson. “DOE Agile BioFoundry Overview”. Invited Talk, SynBioBeta 2018 visit to ESE, Emeryville, CA, October 1, 2018
• Nathan J. Hillson. “ABF Organization, Progress, and FY19 Plans”. Invited Talk, ABF All Hands Annual Meeting 2018 (Industry Day), Emeryville, CA, September 12, 2018
• Nathan J. Hillson. “Agile BioFoundry Overview”. Invited Talk, ABF All Hands Annual Meeting 2018, Emeryville, CA, September 10, 2018
• Garcia Martin, H. “A new approach to flux analysis”. Invited Talk, ABF All Hands Annual Meeting 2018, Emeryville, CA, September 10, 2018
Publications, Patents, Presentations, Awards, and Commercialization (cont.)

Presentations (cont.)

- Hector Plahar. “DIVA Software Platform”. Invited Talk, ABF All Hands Annual Meeting 2018, Emeryville, CA, September 10, 2018
- Jennifer Chiniquy. “DIVA DNA-Seq and DNA Construction”, Invited Talk, ABF All Hands Annual Meeting 2018, Emeryville, CA, September 10, 2018
- Garcia Martin, H. “A New Approach to Flux Analysis”. ABF Annual Meeting, Berkeley CA, September 7, 2018
- Garcia Martin, H. “Towards a predictive synthetic biology enabled by machine learning and automation”. Invited talk, Machine learning for science workshop, Berkeley, CA, September 5, 2018
- Garcia Martin, H. "Modeling from molecules to ecosystems : opportunities, challenges and vision". Invited talk, BioEpic meeting, Berkeley, CA, August 23, 2018
- Garima Goyal “DIVA DNA Construction”. Invited Talk, JBEI Annual Meeting 2018, Sonoma, CA, August 20-22, 2018
- Garcia Martin, H. “Opportunities in the intersection of synthetic biology, machine learning and automation”. Invited talk, JBEI Annual Meeting, Berkeley, CA, August 20, 2018
- Garcia Martin, H. “Towards a predictive synthetic biology enabled by machine learning and automation”. Invited talk, SIMB, Chicago, IL, August 15, 2018
- Garcia Martin, H. “Towards a predictive synthetic biology enabled by machine learning and automation”. Invited talk, International Workshop for BioDesign and Automation (IWBDA), Berkeley, CA, August 2nd, 2018
- Garcia Martin, H. “Towards a predictive synthetic biology enabled by machine learning and automation”. Invited talk, Biocruces, Bilbao, Spain, July 20, 2018
- Garcia Martin, H. "Machine Learning to Predict Metabolic Pathway Dynamics from Multiomics Data". Invited talk, AI for synthetic biology, Stockholm, Sweden, July 15, 2018
- Garcia Martin, H. "Towards a predictive synthetic biology enabled by machine learning and automation". Invited talk, BCAM, Bilbao, Spain, July 3, 2018
- Nathan J. Hillson, "Berkeley (and other) National Lab(s): Current Biosecurity Frameworks and Strategies in Action", Invited Talk, EBRC meeting - Improving Security Considerations in Engineering Biology Research, Emeryville, CA, June 26, 2018
- Nathan J. Hillson and Hector A. Plahar, "ICE Software Platform", Invited Talk, Software for Synthetic Biology Workflows Workshop, SEED 2018, Scottsdale, Arizona, June 7, 2018
- Gregg Beckham. Developing new processes to valorize lignin and sugars to building-block chemicals and materials, RWTH Aachen University, May 28th, 2018
Publications, Patents, Presentations, Awards, and Commercialization (cont.)

Presentations (cont.)

• Gregg Beckham. Adventures in engineering Pseudomonas putida for expanded substrate specificity and improved tolerance, RWTH Aachen University, May 28th, 2018
• Hillson, N.J. “Berkeley Lab project activities, biosecurity practices, and their roles within the larger biosecurity landscape”. Invited Talk, Working Group on Automation in SynBio, Gryphon Scientific, Takoma Park, MD, May 23, 2018
• Hillson, N.J. “Recent developments at the Agile BioFoundry”. Invited Talk, Diligence Ventures/Suzhou Government visit to ABF, Emeryville, CA, May 2, 2018
• Gregg Beckham. Hybrid biological and catalytic processes to manufacture and recycle plastics, MIT, April 27th, 2018
• Hillson, N.J. “Recent developments at the Agile BioFoundry”. Invited Talk, 2018 Life Science Symposium - Synthetic Biology and Metabolic Engineering, MilliporeSigma Innovation Center, St. Louis, MO, April 27, 2018
• Garcia Martin, H. " A Machine Learning Approach to Predict Metabolic Pathway Dynamics from Time Series Multiomics Data”. Invited talk at Madison Microbiome Meeting at University of Wisconsin, Madison, WI, April 25, 2018.
• Jennifer Chiniquy, Cindi Hoover, Joel Guenther, Nurgul Kaplan, Garima Goyal, Mark Kulawik, Hector Plahar, Zachary Costello, Brian Bushnell, Samuel Deutsch, and Nathan J. Hillson. “Overcoming Challenges in MiSeq DNA Construct Sequence Validation”. Invited Poster, DOE JGI User Meeting 2018, San Francisco, CA, March 14, 2018
• Garcia Martin, H. "EDD as a data warehouse and Learn facilitator". Invited talk at Argonne National Lab, St. Louis, Lemont, IL, March 5, 2018
• Garima Goyal, Nurgul Kaplan, Jennifer L. Chiniquy, Hector A. Plahar, Annabel Large, Lisa Simirenko, Samuel Deutsch, and Nathan J. Hillson. “DIVA Services: PCR, Full DNA Construction, and MiSeq Validation”. Invited Poster, DOE BER GSP Contractor’s Meeting 2018, Tysons Corner, VA, February 27, 2018
• Hillson, N.J. “Three synthetic biology design challenges we face, and how we are approaching them”. Invited Talk, Dagstuhl Seminar 18082, Wadern, Germany, February 19, 2018
• Garcia Martin, H. " Machine Learning and Mechanistic Models to Predict Biological Outcomes using 'omics Data”. Invited talk at Environmental Genomics and Systems Biology retreat, Berkeley, CA, January 19, 2018
• Jesus F. Barajas. “Current progress towards engineered PKS lactam pathways”. JBEI/BBD group meeting presentation, December 13, 2017
• Hillson, N.J. “Agile BioFoundry Overview”. Invited Talk, iSynBio/SIAT visit to JGI, Walnut Creek, CA, December 9, 2017
• Jennifer Chiniquy, Nurgul Kaplan. “DIVA DNA-Seq Service”. ESE User Meeting presentation, November 20, 2017
Publications, Patents, Presentations, Awards, and Commercialization (cont.)

Presentations (cont.)

• Hillson, N.J. “Agile BioFoundry Overview”. Invited Talk, Cargill visit to ESE, Emeryville, CA, November 17, 2017
• Hillson, N.J. “Agile BioFoundry Overview”. Invited Talk, University of Wyoming, Laramie, WY, November 3, 2017
• Hillson, N.J. “Parallel Integration and Chromosomal Expansion of Metabolic Pathways”. Invited Talk, University of Wyoming, Laramie, WY, November 3, 2017
• Hillson, N.J. “Agile BioFoundry Overview”. Invited Talk, Braskem Zoom Teleconference, November 1, 2017
• Hector Garcia Martin. “Modeling of -omics data for Biofuel Production through Synthetic Biology”. EECE Department seminar, Washington University, St. Louis MO, October 20th, 2017
• Hillson, N.J. “Agile BioFoundry Overview”. Invited Talk, ABLC Next Tour of ESE (ABF/ABPDU/JBEI), Emerville, CA, October 16, 2017
• Hillson, N.J. “BioDefense – the Agile BioFoundry and Predictive Biology”. Invited Talk, Presentation for Dimitri Kusnezov (Chief Scientist, DOE NNSA), Berkeley, CA, September 21, 2017
• Hillson, N.J. “Sustainable development through a synthetic biology foundry”. Invited Talk, CellPress LabLinks - Basic to Applied Science for Sustainable Development, Berkeley, CA, September 18, 2017
• Plahar, H.A. “Software Session: Recent DeviceEditorjs/DIVA/ICE improvements”. Invited Talk, JBEI Annual Meeting, Monterey, CA, September 15, 2017
• Hillson, N.J. “Agile BioFoundry Update”. Invited Talk, JBEI Annual Meeting, Monterey, CA, September 13, 2017
• Chiniquy J., “DIVA DNA-Seq Service”. Invited Talk, Agile BioFoundry Annual Meeting, NREL IBRF, Golden, CO, August 28, 2017
Presentations (cont.)

Posters

• Jonathan Diab, Jennifer Chiniquy, Cindi Hoover, Joel Guenther, Nurgul Kaplan, Garima Goyal, Mark Kulawik, Hector Plahar, Zachary Costello, Brian Bushnell, Samuel Deutsch, and Nathan J. Hillson. “MiSeq DNA Construct Sequence Validation”. Invited Poster, ABF All Hands Annual Meeting 2018, Emeryville, CA, September 10, 2018
• Isaac Wolf, Carolina Barcelos, Shawn Chang, Nilufer Oguz, Matt Dorsey, Davinia Salvachua, Robert Nelson, Todd Pray, Eric Sundstrom and Deepti Tanjore. “Harmonization of Fermentation for Production of P. putida-derived Muconic Acid”. Invited Poster, ABF All Hands Annual Meeting 2018, Emeryville, CA, September 10, 2018
Posters (cont.)

- Jonathan Diab, Jennifer Chiniquy, Cindi Hoover, Joel Guenther, Nurgul Kaplan, Garima Goyal, Mark Kulawik, Hector Plahar, Zachary Costello, Brian Bushnell, Samuel Deutsch, and Nathan J. Hillson. “MiSeq DNA Construct Sequence Validation”. Invited Poster, JBEI Annual Meeting 2018, Sonoma, CA, August 20-22, 2018
- Annabel Large, Nurgul Kaplan, Jennifer Chiniquy, Garima Goyal, and Nathan Hillson. “Expansion and Optimization of DIVA DNA Sequence Validation Services”. Invited Poster, JBEI Annual Meeting, Monterey, CA, September 13, 2017
Publications, Patents, Presentations, Awards, and Commercialization (cont.)

Posters (cont.)

Posters (cont.)