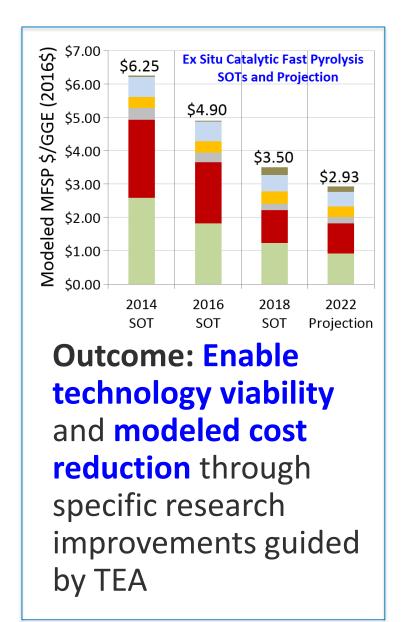


DOE Bioenergy Technologies Office (BETO) 2019 Project Peer Review

WBS 2.1.0.302 Thermochemical Platform Analysis – NREL

Session: Catalytic Upgrading Date: March 5, 2019


PI: Abhijit Dutta National Renewable Energy Laboratory

BETO: Bioenergy Technologies Office **CFP:** Catalytic Fast Pyrolysis **DME:** Di-Methyl Ether **HOG:** High-Octane Gasoline **LCA:** Life-Cycle Analysis **MFSP:** Minimum Fuel Selling Price **MYP:** Multi-Year Plan (BETO) **SOT:** State of Technology **TEA:** Techno-Economic Analysis

Overview and Approach

Provide process design and techno-economic analysis (TEA) for thermal-catalytic conversion processes to inform and guide NREL/BETO R&D priorities

- Benchmark research goals through detailed models
- Track advancements in the State of Technology (SOT) and sustainability metrics based on experimental data
- Constant research feedback to and from TEA
- Build predictive TEA models

NREL | 4

Quad Chart Overview – NREL TC Platform Analysis

Timeline (current merit review cycle)

Start Date	October 1, 2016
End Date	September 30, 2019
% Complete	80% (29 months of 3 years)

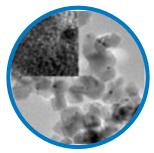
Budget (WBS 2.1.0.302):

	FY14 – FY16 Costs	FY17 Costs	FY18 Costs	Planned FY19- End Date	
DOE Funded	4,452k	1,553k	1,115k	768k	
Cost Share	No cost share (100% DOE-BETO funding)				

⁺TEA: Techno-Economic Analysis, [‡]LCA: Life-Cycle Assessment

Key Barriers Addressed:

<u>Ct-F</u>: Yield from catalytic processes <u>ADO-A</u>: Process integration


Objective:

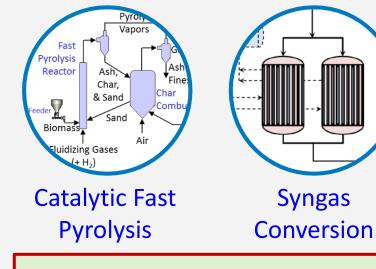
To inform and guide R&D priorities for thermal and catalytic conversion processes through process-design-based TEA⁺ and LCA[‡].

Partners:

- NREL & ChemCatBio (expt. & research)
- PNNL (TEA/sustainability/hydrotreating)
- Idaho National Lab & FCIC (feedstock)
- Argonne National Lab (LCA)
- DWH Consulting (modeling / capital costs)
- NIST (phase equilibrium modeling)
- Consortium for Computational Physics and Chemistry (reactor modeling)
- Johnson Matthey (catalyst technologies)
- Petrobras (petroleum refiner) via CRADA

Project Overview – Core Research & Supporting Work

Catalyst R&D, Experimental Data, & Catalyst Cost Collaboration with ChemCatBio & NREL

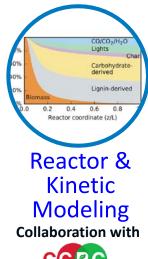

Researchers, Johnson Matthey

Model Prediction of Fuel Quality & Experimental Data

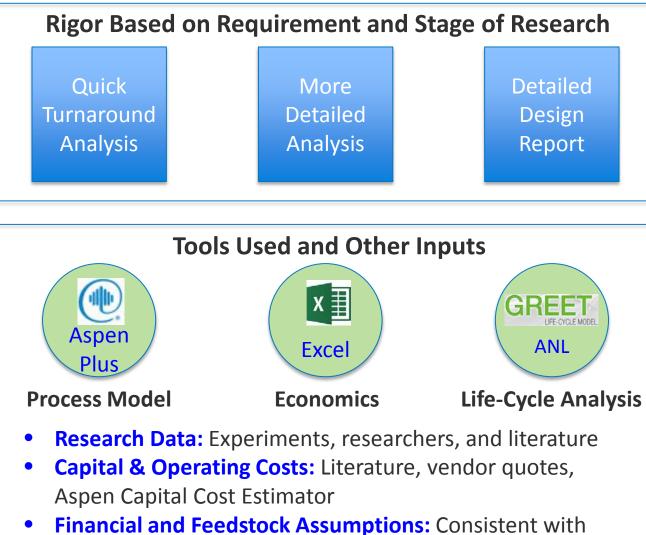
> **Collaboration with** NREL Biomass Researchers and Fuels Group

Core Research Areas (Catalyst Development Driven)

Emerging Technology Options


(e.g. Co-processing, CO₂ upgrading)

Collaboration with Idaho National Laboratory Sustainability & Life-Cycle Analysis


Collaboration with Argonne National Laboratory

Consortium for Computational Physics and Chemistry

Technical Approach

Outputs

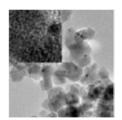
•

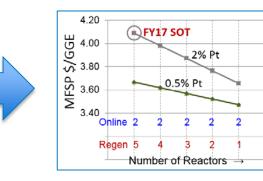
- **MFSP (Minimum Fuel Selling Price)** based on nth plant economics & financial assumptions
 - SOT (State of Technology)
 - **Projections**
- **Technical metrics** to • achieve MFSP
- **Sustainability metrics** ٠ of the conversion process
- Full LCA by ANL
- **Review comments** and feedback from stakeholders are incorporated

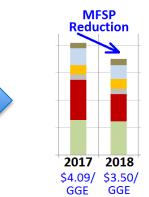
BETO guidelines & related feedstock research

Management Approach	Annual Operating Plan, Milestone Driven All Milestones Executed on Time → Listed in Additional Slides
 Critical Success Factors Impactful research: technical & cost goals Use critical feedback from stakeholders Provide alternative R&D strategies Assess & enable infrastructure	 Technical Challenges [mitigation] Limited data [sensitivity analysis] Provide alternate R&D approaches
integration for commercial relevance	[versatile models with adaptability] Rigor vs speed [impact-specific efforts] Predictive modeling [strategic partnerships]

Example of Interaction with Research to Reduce CFP MFSP from FY17 to FY18

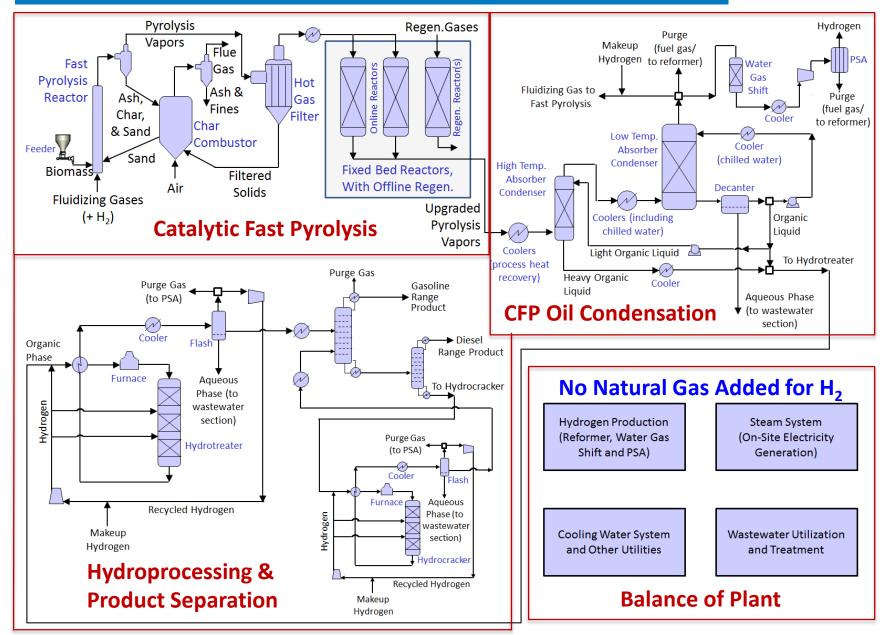


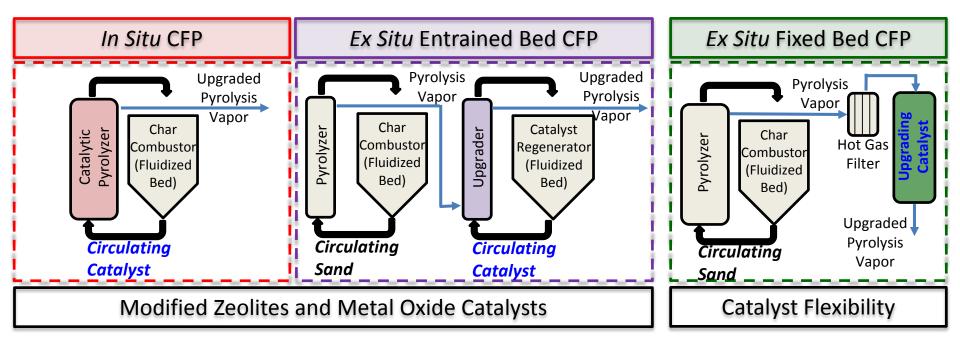

TEA-Identified Cost Drivers


- Pt loading
- Online/regeneration time

Implemented by Research

- Lower Pt loading
- Shorter regeneration time



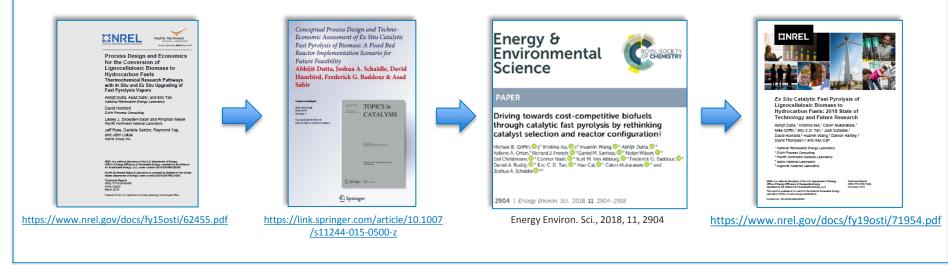

Technical Progress and Accomplishments

Fixed Bed Ex Situ CFP Conceptual Process

Details at: https://www.nrel.gov/docs/fy15osti/62455.pdf and https://www.nrel.gov/docs/fy19osti/71954.pdf

CFP Technology Options

- Lower capital investment
- Operating conditions tied to fast pyrolysis
- Catalyst mixed with biomass, char, and ash
- Higher catalyst replacement rates

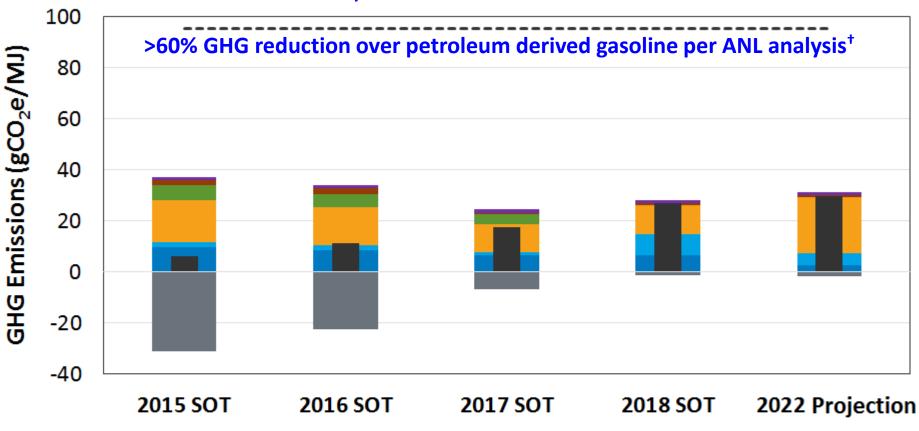

- Operating conditions can differ from fast pyrolysis
- Biomass, ash, and char are reduced or removed; more benign environment for catalyst
- Higher capital investment
- Lower catalyst replacement rates

- More diverse catalysts are feasible
- Access to greater catalytic chemistry
- Long catalyst lifetimes required
- Hot gas filter required
- Limited coking allowable

Hybrids of all or some of these systems are also possible

Timeline of CFP Technology Development Guided by TEA

Ex Situ Catalytic Fast Pyrolysis – Progress

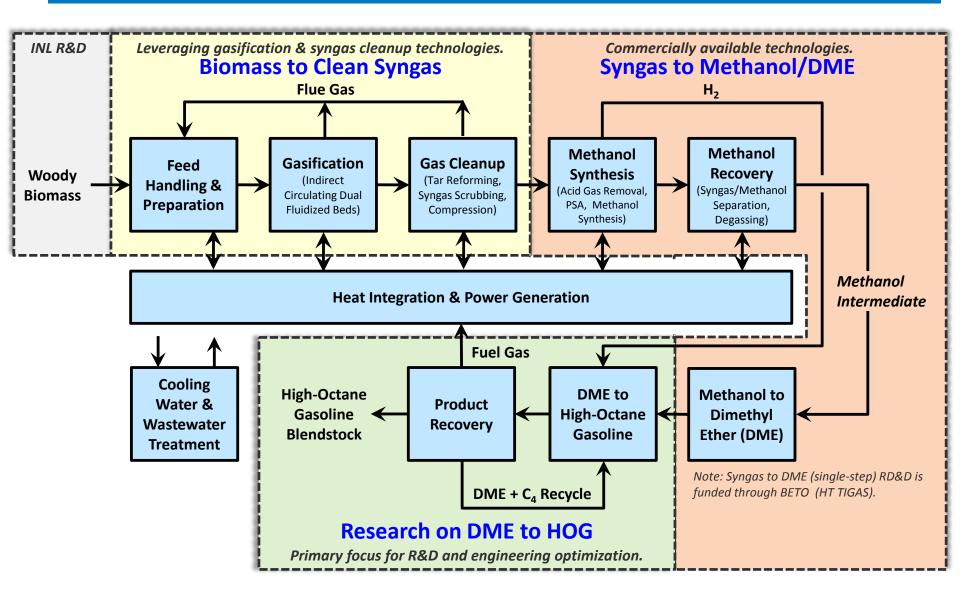

TEA-Guided Modeled-Cost Reduction from \$4.90/GGE in 2016 to \$3.50/GGE in 2018

Process Parameter	2014 SOT	2015 SOT	2016 SOT	2017 SOT	2018 SOT	2022 Projection
Key Improvements	Yield improvements in fluidized system through catalyst and process modifications			2%Pt/TiO ₂ in fixed bed. Large yield increase	Reduced to 0.5% Pt, faster catalyst regen.	Higher yield, use lower cost feed, scale-up, robust long- life catalyst
Vapor Products	Fluidized sy	stem for 2014	-2016 SOT =	→ Fixed bed sy	rstem for 2017	-2022 Models
Non-Condensable Gases	35	36	34	31	31	31
Aqueous Phase (% C Loss)	25 (2.9)	25 (2.9)	24 (3.4)	27 (2.9)	23 (5.0)	23 (3.0)
Solids (Char + Coke)	12 + 11	11 + 9.5	12 + 8.3	10.4 + 3.3	11.7 + 3.3	11.7 + 3.2
Organic Phase	17.5	18.6	21.8	28.3	30.8	31.4
H/C Molar Ratio	1.1	1.1	1.1	1.2	1.2	1.2
Carbon Efficiency (%)	27	29	33	42	45	47
Oxygen Content (% of organic)	15.0	13.3	16.8	16.5	18.5	16.4
Hydroprocessing C Eff. (% of org.liq.)	88	90	87	91	89	91
Carbon Eff. to Fuel Blendstocks (%)	23.5	25.9	28.3 —	→ 38.1	39.7	42.3
Energy Efficiency to Fuels (% LHV)	30.4	33.4	37.0	50.2	52.1	56.1
Diesel-Range Product (% GGE basis)	15	15	15	52	52	52
Minimum Fuel Selling Price (\$/GGE)	\$6.25	\$5.45	\$4.90 —	\$4.09		\$2.93

Note: All costs are presented in 2016\$. Reference: https://www.nrel.gov/docs/fy19osti/71954.pdf. SOT: State of Technology

Ex Situ CFP – Sustainability

****Other Sustainability Metrics for Conversion Process in Additional Slides****

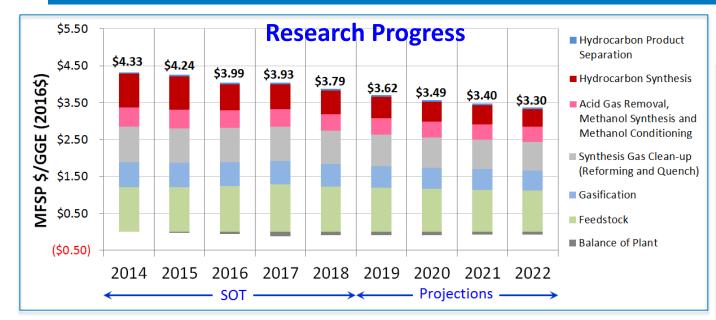


- Fuel transportation and net fuel combustion
- Biorefinery conversion
- Depot preprocessing
- Silviculture, fertilization, harvest and collection
- --- Petroleum gasoline

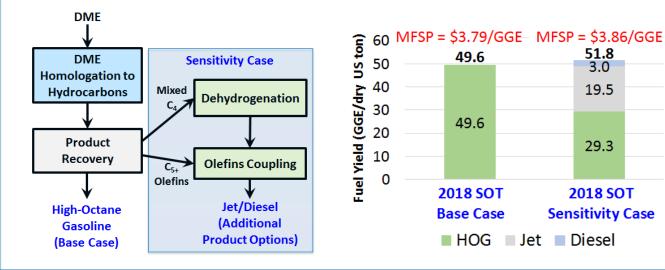
- Co-product displacement credits
- Transportation to biorefinery
- Fieldside preprocessing and transportation to depot
- Supply Chain

† Reference: Cai et al. Argonne National Laboratory report, ANL/ESD-18/13, 2018. SOT: State of Technology

Syngas to High-Octane Gasoline Conceptual Process


HOG: High-Octane Gasoline. Details at: https://www.nrel.gov/docs/fy15osti/62402.pdf and https://www.nrel.gov/docs/fy19osti/71957.pdf

High-Octane Gasoline vs. Traditional MTG


Methanol to Gasoline (MTG) Pathway	High-Octane Gasoline (HOG) Pathway	Advantage of HOG Pathway
		Branched HC product, minimal aromatics
ZSM-5 catalyst	Beta-zeolite catalyst	
350 – 500 °C 20 atm	175 – 225 °C 1-10 atm	Lower severity conditions, lower coking rate
RON: 92 MON: 83	RON: 95+ MON: 90+	High octane synthetic alkylate
100 gal*	118 gal*	Higher yield (18%)

*relative yield from same carbon source

Syngas Conversion to High-Octane Gasoline (HOG)

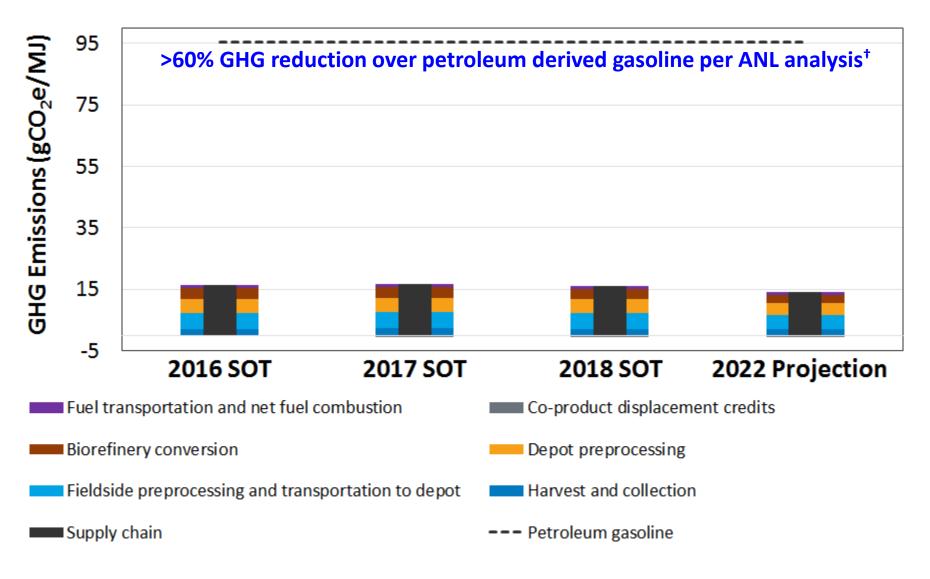
Analysis to Help Expand Product Options to Jet/Diesel

Analysis of CO₂ Utilization & Quantification of Future Opportunities

- Benefits of process intensification
- Use of low-cost
 feedstock and
 bio-gas utilization
- Supplemental renewable electricity and hydrogen

References: https://www.nrel.gov/docs/fy15osti/62402.pdf and https://www.nrel.gov/docs/fy19osti/71957.pdf. SOT: State of Technology

Syngas to High-Octane Gasoline – Progress


TEA-Guided Modeled-Cost Reduction from \$3.99/GGE in 2016 to \$3.79/GGE in 2018

Process Parameter	2014 SOT	2015 SOT	2016 SOT	2017 SOT	2018 SOT	2022 Design
Hydrocarbon Synthesis Catalyst	Commercially available beta-zeolite		NREL beta-zeolite modified			\longrightarrow
H ₂ Addition to HC Synthesis	No	Yes —				\longrightarrow
Utilization of C ₄ Reactor Products	Co-Pro	oduct	Recycle to Syr	nthesis Reactor		\rightarrow
Single-Pass DME conversion	15%	15%	19.2% —	→ 27.6% -	→ 38.9%	40%
Productivity of Hydrocarbon Synthesis Catalyst (kg/kg-cat/h)	0.02	0.03	0.04	0.09	0.07	0.10
Carbon Selectivity to C ₅ + Product	46.2%	48.3%	81.8% —	→ 74.8% -	→ 72.3%	86.7%
Carbon Selectivity to Aromatics (HMB represents coke / pre-cursers)	25% Aromatics (10% HMB)	20% Aromatics (9% HMB)	4% Aromatics (4% HMB)	4% Aromatics (4% HMB)	8% Aromatics (4% HMB)	0.5% as HMB
Coupling of C ₄ -C ₈ Olefins to Jet	No		Sensitivity	y Scenarios —		\rightarrow
C ₅ + Product Yield (Gallons / Ton)	36.2	36.4	51.4	50.0	51.4	56.0
Carbon Efficiency to C ₅ + Product	19.3%	19.4%	25.2%	24.3%	25.5%	27.9%
C ₄ Product Yield (Gallons / Ton)	16.3	16.2	0.0	0.0	0.0	0.0
Carbon Efficiency to C ₄ Product	7.0%	6.9%	0.0%	0.0%	0.0%	0.0%
Minimum Fuel Selling Price (\$ / GGE)	\$4.33	\$4.24	\$3.99 —	→ \$3.93 —	→ \$3.79	\$3.30
Conversion Impact to MFSP (\$ / GGE)	\$3.13	\$3.03	\$2.76	\$2.64	\$2.56	\$2.18

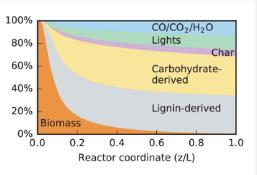
Note: All costs are presented in 2016\$. Reference: https://www.nrel.gov/docs/fy19osti/71957.pdf. SOT: State of Technology

Syngas to High-Octane Gasoline – Sustainability

****Other Sustainability Metrics for Conversion Process in Additional Slides****

† Reference: Cai et al. Argonne National Laboratory report, ANL/ESD-18/13, 2018. SOT: State of Technology

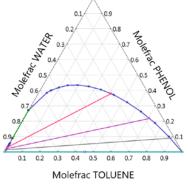
Milestones and Some Other Highlights


Milestones & Publications

- All milestones completed (see additional slides for complete list)
 - Go/No-Go: Identify a path to
 <\$3.00/GGE by 2022, with potential for <\$2.50/GGE by 2030
- Publications listed in additional slides

Support of Work Related to Catalytic Conversion

- Biological and catalytic upgrading of CFP aqueous phase
- Separations consortium, FCIC, Co-Optima, ChemCatBio and others


Entrained Flow Reactor Models for Pyrolysis and Gasification

- Compatible with process simulations
- Ability to include kinetics being developed by the CCPC*
- Helps understand flow and scaling assumptions for process modeling

Reference: ACS Sustainable Chem. Eng. 2017, 5, 3, 2463-2470. ***CCPC:** Consortium for Computational Physics and Chemistry

Integration of Predictive Phase Equilibrium Models from NIST

Example of Ternary Diagram for Liquid-Liquid Equilibrium in Aspen Plus using the NIST-COSMO-SAC Fully Predictive Model.

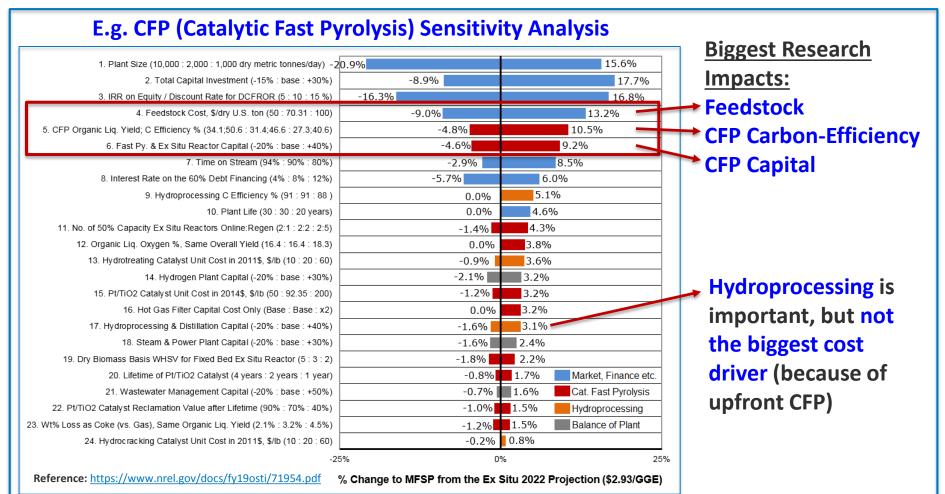
Previous Pub: J. Chem. Eng. Data 2017, 62, 1, 243-252


Relevance

Provide Research Specifics for Achieving < \$3.00/GGE

Associated Technical Parameters and Sustainability Metrics in Additional Slides Feedstock

- Pyrolysis Vapor Quench
- Hydrogen Production


- Pyrolysis and Vapor Upgrading
- Hydroprocessing and Separation
- Balance of Plant

MFSP: Minimum Fuel Selling Price. SOT: State of Technology. Reference: https://www.nrel.gov/docs/fy19osti/71954.pdf

Enabling Productive Research under BETO

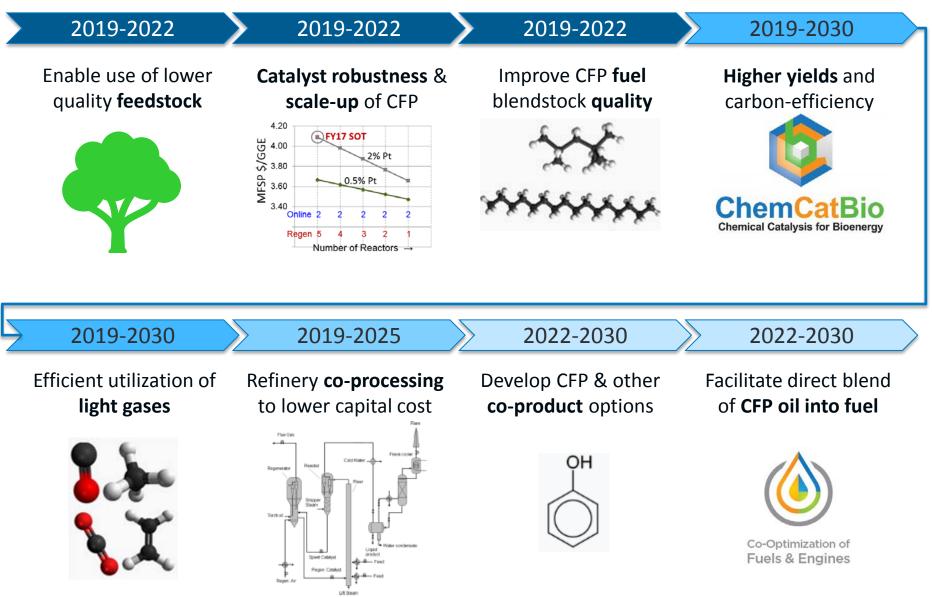
- Detailed analysis for lowering costs
- Sensitivity analysis and options for impactful research
- Deliberate attention towards enabling future commercial implementation

Relevance to Industry and Other Stakeholders

Work Towards Commercial Viability & Product Compatibility

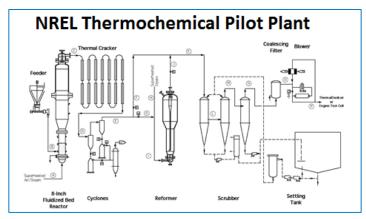
- Cost reduction to enable adoption
- Product quality improvement (e.g. cetane and octane)
 - Analysis for quality improvement to make fuel products more attractive
- Tailor intermediates towards higher value
 - Quantify requirements for refinery integration of CFP oil
- Analysis for scale-up
 - Direct support to facilitate pilot verification
 - Model projections for commercial implementation

Direct Use of Analysis Products by Industry, Academia, & <u>National Labs.</u>


- Detailed reports and journal articles to enable related research
- Simplified *in situ* and *ex situ* CFP **TEA models made publicly available**

Related requests are received on a regular basis

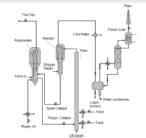
Future Work


Future Goals

Develop for Future Commercial Implementation Achieve Modeled MFSP of <\$3.00/GGE by 2022, and potentially \$2.50/GGE by 2030 (in 2016\$)

Future Milestones and Decision Points

Proposed Go/No-Go (March 2021) (For Pilot Verification of <\$3.00/GGE in 2022)



Use all available experimental results to assess the chances of success for demonstrating a modeled fuel cost of <\$3.00/GGE during the 2022 verification

- Identify any gaps
- Provide options for additional cost reduction (necessary if falling short of verification goals)

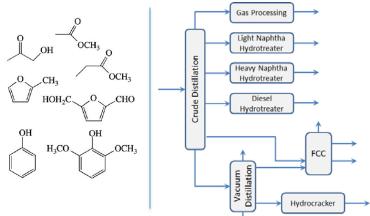
Some Longer Term Work

(For Refinery Integration & Co-Products)

Refinery integration of CFP streams:

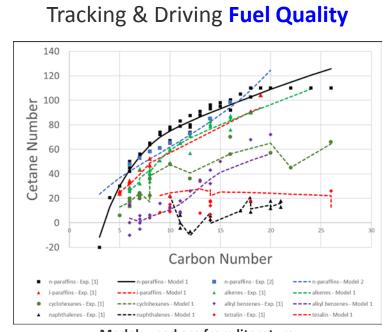
- TEA for most promising options
- Quality & CFP processing requirements
- Identify metrics for success

Development of **CFP co-products**:


- TEA for identified co-products
- Identify selectivity & separation goals

Proposed Future Milestones and Go/No-Go included in Additional Slides

(proposed milestones beyond FY19 will be subject to merit review)


Some Specific Enablers for TEA

Chemistry-Based TEA Modeling for Conversion Technologies and Refinery Integration of CFP Fuels

Integrate experimental chemistry and related models into TEA:

- Effective feedback for catalyst development goals
- Quantify refinery co-processing requirements for integration

Models used are from literature

Implement integrated process model tracking of key fuel quality attributes with experimental speciation. Aim for predictive capability of fuel properties

Identify synergistic use of multiple technologies for more effective biorefineries

Summary

Summary

- Overview and Approach:
 - State-of-the art process modeling for TEA (includes predictive capabilities)
 - Advancements via management plan for research and impactful feedback
 - Key success factors: Impactful research & future commercial implementation
- Technical Progress and Accomplishments (all milestones were met)
 - Significant TEA-guided advancements for CFP effective research options
 - Additional product options analyzed for jet/diesel from syngas
 - Analysis of process intensification, utilization of CO₂, biogas, renewable H₂ & electricity
- Relevance
 - Directly enables BETO goal of <\$3.00/GGE by 2022
 - Analysis feedback and options used for effective research
 - Commercial relevance: Cost reduction, product compatibility, scale-up
 - Detailed analysis products, including example models externally available
- **Future Work** (proposed future milestones & go/no-go in additional slides)
 - TEA for continued cost reduction for CFP and syngas pathways
 - Go/No-Go for success of the <\$3.00/GGE verification</p>

Acknowledgements

DOE BETO for funding and support

NREL (includes subcontracts) o Connor Nash

- o Zia Abdullah
- o Gregg Beckham
- o Mary Biddy
- Adam Bratis
- o Daniel Carpenter
- o Earl Christensen
- o Abhijit Dutta
- o Chaiwat Engtrakul
- o Carrie Farberow
- o Jack Ferrell
- o Gina Fioroni
- o Tom Foust
- o Jesse Hensley
- David Humbird
- o Kristina lisa
- o Chris Kinchin
- o Kim Magrini
- Bob McCormick
- o Calvin Mukarakate

- o Mark Nimlos
- o Dan Ruddy
- o Josh Schaidle
- o Avantika Singh
- o Michael Talmadge
- o Eric Tan
- o Suphat Watanasiri
- Matt Wiatrowski
- o Nolan Wilson
- o Erick White
- Thermochemical research team
- o Biorefinery analysis team

PNNL

- o Corinne Drennan
- o Susanne B. Jones
- \circ Aye Meyer
- o Steve Phillips
- o Lesley Snowden-Swan

INL

- o Damon Hartley
- o David Thompson

ANL

o Hao Cai

NIST-TRC

- o Vladimir Diky
- o Kenneth Kroenlein
- o Chris Muzny
- Eugene Paulechka
- Feedstock Interface (FCIC)

Johnson Matthey

ChemCatBio

Consortium for

- Computational Physics
- and Chemistry (CCPC)
- **Co-Optima**
- Petrobras
- **Separations Consortium**

Additional Slides for Reviewers

Additional Slides – Table of Content

Project Abstract and PI Biography

Milestones & Go/No-Go (completed and future)

Responses to 2017 Peer Review Comments

Additional Technical Content - CFP

Additional Technical Content – Syngas to HOG

NREL Thermochemical Platform Analysis (WBS 2.1.0.302)

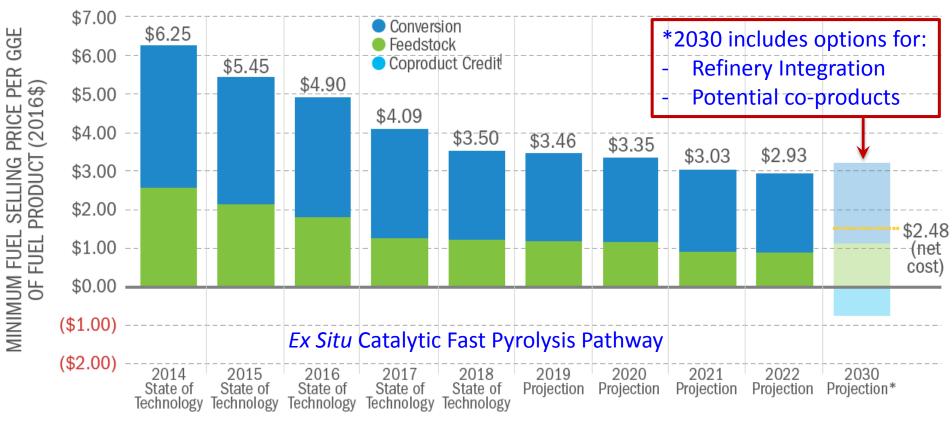
The objective of the NREL Thermochemical Platform Analysis (WBS 2.1.0.302) project is to inform and guide R&D priorities for thermal and catalytic conversion processes by providing process design and techno-economic analysis (TEA). This is achieved through close collaboration with researchers and external experts, along with the use of both commercially-available modeling tools and the development or use of partner-developed domain-specific tools and resources, such as refinery integration, kinetic and reactor models, phase equilibrium models, and pertinent bio-products market studies.

This project is directly aligned with DOE-BETO goals; this includes the reduction of projected conversion costs for biomass derived fuels and products by enabling research advancements. TEA-guided research has helped achieve significant modeled cost reductions for the *ex situ* catalytic fast pyrolysis (CFP) pathway since the previous peer review in 2017 and we have identified specific research steps to help reduce the modeled Minimum Fuel Selling Price (MFSP) to <\$3.00/GGE by 2022. Further cost reduction through refinery integration, development of valuable co-products, and other options are being identified for future research to help reduce the modeled MFSP to \$2.50/GGE by 2030. Additional priorities anticipated in the future, such as the use of renewable electricity for liquid fuels and products, and emphasis on waste utilization are also being explored in conjunction with research on catalytic utilization of syngas and other gases. Industry-relevant parameters are given deliberate attention as part of the work done under this project to help answer questions important for future commercialization.

Abhijit Dutta, Principal Investigator

Abhijit Dutta is a senior engineer in the National Bioenergy Center (NBC) at the National Renewable Energy Laboratory (NREL). He has a Master's degree in Chemical Engineering with more than 20 years of experience in process engineering and simulator development. His expertise includes process modeling and techno-economic analysis for thermal and catalytic conversion processes. He has led the analysis work for the Thermochemical Platform Analysis (NREL) project for nearly a decade and has multiple publications based on his work at NREL. Prior to joining NREL, Dutta worked at Bloom Energy and Aspen Technology on process control and simulator development.

NREL Employee Webpage: https://www.nrel.gov/research/abhijit-dutta.html


Milestone Description	Type Due Date Status
FY16 State of Technology (SOT) Assessments: Develop and report on SOT assessments for the (i) ex situ catalytic fast pyrolysis and (ii) IDL high octane gasoline (HOG) pathways with respect to the FY2016 cost targets of (i) \$5.34/GGE and (ii) \$3.95/GGE, respectively (2014 dollars). Technical, economic and sustainability metrics from the SOT analyses are published in the BETO MYPP.	Quarterly 11/11/2016 Completed
Quick-Turnaround Analysis (QTA) Proof-of-Concept: Demonstrate proof-of-concept with an initial QTA model, propose options for next steps, and confirm future scope with BETO. The model will be developed as simplified pathway analysis tool(s) to enable users to quickly estimate the impact of conversion process improvements from emerging R&D on costs and sustainability of biomass-derived fuels and co-products.	Quarterly 3/31/2017 Completed
Kinetic Model for DME Homologation: Develop a kinetic model for DME homologation on a Cu-modified BEA catalyst with parameters estimated by fitting the model to bench-scale kinetic data. The model will describe DME conversion and the rate of production of (1) the C2-C3 fraction, (2) the C4 fraction and (3) gasoline range hydrocarbons (C5+) over the range of conditions (i.e., temperatures and pressures) studied experimentally. This work will serve as the basis for the kinetic model for DME homologation on a Cu-modified BEA catalyst, which will be completed and incorporated into the Aspen Plus process model used for techno-economic analysis in FY18.	Quarterly 6/30/2017 Completed
FY17 State of Technology (SOT) Assessments: SOT assessment(s) for at least one of two pathways (i) ex situ catalytic fast pyrolysis and (ii) IDL high octane gasoline (HOG) pathways with respect to the FY2017 cost targets of (i) \$4.67/GGE and (ii) \$3.80/GGE, respectively (2014 dollars).	Annual 9/30/2017 Completed

Milestones (FY2018)

Milestone Description	Type Due Date Status
State of technology assessment for the ex-situ catalytic fast pyrolysis pathway based on experimental results from FY2017.	Quarterly 12/31/2017 Completed
Outline at least one pathway with modeled MFSP below \$3.00/GGE using options such as co-products, co- processing, process optimization etc. along with future performance targets / data outlined in previous publications / experiments / design reports. Provide options for path(s) forward for achieving <\$2.50/GGE (modeled) in the future along with 50% GHG reduction over petroleum sources. Pathways may include IDL (indirect liquefaction), CFP (catalytic fast pyrolysis), co-processing of CFP oil and/or other biomass derivatives, etc.	Go/No-Go (Annual) 3/31/2018 Completed
Public outreach efforts: Plan for additional outreach with available resources. Options such as making additional models available and presenting TEA related efforts/methodology via webinars will be considered. The aim will be to determine at least one outreach activity to be executed before the end of the fiscal year.	Quarterly 4/30/2018 Completed
Prioritize the development and application of tools in a reduced funding scenario; outline future applications, further development opportunities and resource requirements for these tools. Some of the tools to be considered include the Quick Turnaround Analysis (QTA), custom modeling, kinetic and reactor models, refinery integration tools, and phase equilibrium models.	Quarterly 6/30/2018 Completed
Expand the DME homologation kinetic model developed in FY17 to describe paraffin/olefin ratio, production rate of the C7 fraction, and catalyst deactivation. This model will be developed in collaboration with the Liquid Fuels via Upgrading of Syngas Intermediates (WBS 2.3.1.305) project.	Quarterly 9/30/2018 Completed
Provide high-level TEA for new low TRL research in FY18 under lab calls and other research efforts. The exact work will be determined based on research progress and requirements of specific projects, with focus on identifying the most impactful areas for research. We will also look into opportunities and costs for smaller scale deployment of biomass conversion systems and provide initial assessments.	Quarterly 9/30/2018 Completed
FY18 SOT for at least one conversion approach (e.g., in situ, ex situ, dual bed, co-processing/hydrotreating) demonstrating a reduction in the modeled MFSP by \$0.25/GGE compared to the FY17 SOT.	Quarterly 9/30/2018 Completed

FY2018 Go/No-Go Summary

Identify options for cost reduction to <\$3.00/GGE by 2022 with potential for <\$2.50/GGE by 2030

*2030 projections are based on high-level estimates that will be modeled in detail in future years

All milestones (to date) completed on time

Milestone Description	Type Due Date Status
Description: Develop updated 2022 technical targets and cost projections for (1) the fixed bed ex situ catalytic fast pyrolysis (CFP) and (2) indirect liquefaction high-octane gasoline (HOG) pathways. Publication of this work will be cited in the updated MYPP. Technical targets and modeled Minimum Fuel Selling Price (MFSP) projections for 2022 will be developed for the CFP and IDL-HOG pathways. CFP pathway will target <\$3.00/GGE, while the IDL-HOG pathway will use conversion improvements alongside lower-cost feedstocks for projections to achieve a lower MFSP compared to the previous MYPP projection of \$3.47/GGE.	Quarterly 10/30/2018 Completed
Description: Comparative TEA assessment of CO2 recycle to increase carbon efficiency in the high-octane gasoline (HOG) pathway. Criteria: The formation of CO2 during biomass gasification, reforming, and acid-gas clean-up represents a significant carbon loss of ca. 20%. The ability to recycle and reactivate this CO2 back into the process will enable a significant increase in overall carbon-efficiency and reduction in MFSP. At least 2 process models with TEA will be used to identify the most impactful unit operation where CO2 can be recycled to increase carbon efficiency, considering (1) recycle to methanol synthesis versus, (2) process intensification that enables direct syngas conversion to HOG in a single reactor. Process and catalyst performance metrics for CO2 activation (e.g., recycle concentration, targeted single-pass conversion) will be established and correlated with the increase in carbon efficiency and reduction in MFSP. Joint with WBS#2.3.1.305	Quarterly 12/31/2018 Completed
Description: Demonstrate liquid-liquid equilibrium (LLE) predictions using NIST-developed model(s) with comparisons to the Wiltec experimental information used for the model development and validation. Criteria: Assess predictive capabilities of NIST developed predictive models with respect to experimental data for multicomponent model systems.	Quarterly 3/31/2019 Ongoing
Description: Quantify the benefits of the new GC for improved carbon balance closures on NREL's 2FBR ex situ (fixed bed) CFP system. Criteria: Determine whether 90% or greater carbon balance closure was achieved, and what further improvements will be necessary if carbon balance closure is less than 90%. (Joint milestone with CFP experimental task – WBS #2.3.1.314)	Quarterly 6/30/2019 Future
Description: FY19 State of Technology Assessments for ex situ catalytic fast pyrolysis (CFP) and indirect liquefaction (IDL) high- octane gasoline (HOG) pathways. Criteria: (1) FY19 SOT for fixed bed ex situ CFP demonstrating a reduction in the modeled MFSP by \$0.50/GGE compared to the FY17 SOT, (2) FY19 SOT assessment for the IDL High-Octane Gasoline pathway with respect to the updated technical and cost targets established in FY2018. Quantify associated sustainability metrics for the SOT cases.	Quarterly 9/30/2019 Future
FY19 TC Analysis "Stretch" Milestone: Identify specific research approaches to help achieve further conversion cost reductions beyond 2022 to enable minimum fuel selling prices (MFSPs) of \$2.50/GGE or lower by 2030. Criteria: Co-products, refinery integration, off-gas utilization including CO ₂ , lower cost feedstocks may be included among the strategies. This work will not include final technical targets out to 2030; it will identify key bottlenecks and related metrics for required breakthroughs. E.g. if refinery co-hydroprocessing of catalytic fast pyrolysis oils is identified as a strategy, then current data will be used to show the anticipated quality metrics requirements for successful implementation.	Annual 9/30/2019 Future

Future Milestones (Preliminary)

Milestone Description	Type Due Date
Integration of fuel quality predictions in CFP process model: Demonstrate octane and cetane number predictions in the process model. Further tuning of the predictions will be part of a subsequent milestone.	Quarterly 12/31/2019
Use custom entrained flow reactor model for quantifying scaling impacts and capital cost sensitivity for 3 different scales (e.g. 200, 500, 1000 tons of biomass per day).	Quarterly 3/31/2020
Reconfigure CFP process model for hydroprocessing fuel quality improvements: Experimental results from modified hydroprocessing options will be used to modify the fixed bed ex situ CFP model, quantify additional costs, and benefits from improved fuel quality. The overall impact on the MFSP in \$/GGE will be compared with a corresponding case with identical CFP oil yields, but using the hydroprocessing steps documented in the 2015 design report.	Annual 6/30/2020
FY20 State of Technology (SOT) Assessments: SOT assessments for the (i) ex situ catalytic fast pyrolysis and (ii) syngas to high octane gasoline (HOG) pathways with respect to the FY2020 cost projections documented in BETO's Multi-Year Plan. Analysis using experimental data will be used to provide TEA based guidance for future improvements to reduce the modeled MFSP.	Quarterly 9/30/2020
Include blending methods for fuel quality predictions for CFP and assess effectiveness in comparison to experimental data: Add and assess blending capability to process models, and tune the blending methods for the best prediction of experimental data. Effectiveness of prediction trends will be analyzed and quantified for one or more experimental oil samples.	Quarterly 12/31/2020
Consolidate all experimental results for CFP, including the potential incorporation of forest residues into the feedstock, initial scale-up impacts, fuel quality improvements, and re-benchmark the process model to determine whether the modeled MFSP goal of <\$3.00/GGE (in 2016 dollars) will be achievable during the 2022 verification. Identify gaps and cost-reduction options if it is deemed that current technology will fall short of the MFSP goal.	Go/No-Go 3/31/2021
Quantify improvements and feasible modeled improvements in carbon efficiencies for syngas conversion processes using technologies for improved gas and solid phase carbon utilization. Propose path forward for additional research driven improvements and quantify cost reductions expected from using compatible waste feedstock.	Quarterly 6/30/2021
FY21 State of Technology (SOT) Assessments: SOT assessments for the (i) ex situ catalytic fast pyrolysis and (ii) syngas to high octane gasoline (HOG) pathways with respect to the FY2021 cost projections documented in BETO's Multi-Year Plan. Analysis using experimental data will be used to provide TEA based guidance for future improvements to reduce the modeled MFSP	Quarterly 9/30/2021

Responses to 2017 Peer Review Comments

Overall Impressions/Comments from Reviewers (key excerpts):

- Some complementary excerpts (selected a few): Strong project with a history of successfully providing key information; earlier work matched the results from the analysis from my similar process development work. Well-managed with clearly defined barriers and critical issues.
- Some comments with specific recommendations (paraphrased): (i) Use the tools to evaluate outside work and validate the tools using well understood technologies; (ii) include risk & outside factors that influence the values; (iii) large project with many aspects made it difficult for the reviewer fully understand; more examples would be helpful for reviewers; (iv) more dissemination of work and some of the products allowing evaluation of outside work.

PI Response to the Above Comments (with current information):

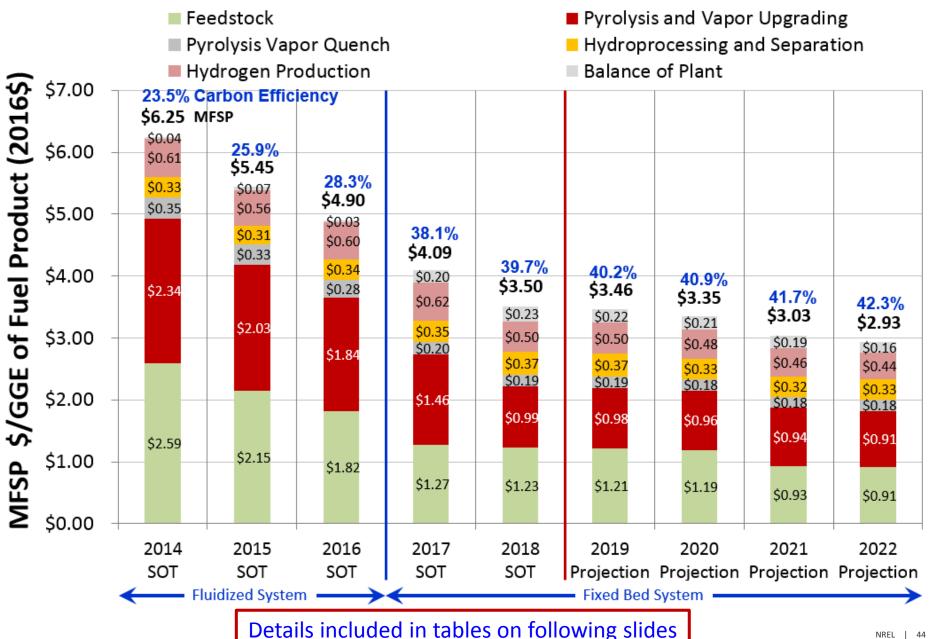
• Thank you for your helpful feedback and guidance. We will continue to be diligent in the recommended areas. Here are some responses/actions for the specific comments/recommendations: (i) The methods used & correctness of our economic spreadsheet tool (subject to our assumptions), have been validated by multiple organizations (including industry and academia) since we started making the tools publicly available (close to the year 2000). Our process modeling efforts include rigorous heat and energy balances in Aspen Plus, industrial data/results (for published and mature processes), and experimental data and research projections (for our research areas). While we do not have the funding or scope to extensively evaluate outside technologies, our methods make significant use of published industrial information wherever available (and an industry-standard capital cost estimation tool). We use experimental validation for our tools, whenever feasible, e.g. our predictive phase equilibrium work with NIST has an experimental validation component. We engage engineering firms for larger design report projects, with significant review by external experts (including from industry). One of the peer reviewers commented that results from our analysis matched the analysis done for similar process development done by that reviewer. (ii) We have the capability to include risk information, and report some of it as part of sensitivity analysis. Our base case values are used to benchmark research goals and progress (hence don't directly include risk information – this allows a clean comparison of research progress using consistent metrics). (iii) The project scope is now significantly streamlined, reflecting a smaller scope and associated funding reductions. This 2019 presentation includes examples. (iv) We made additional models publicly available since the previous peer review. Also, our major publications most often contain sufficient details for re-creating the models. Previous details available at: https://www.energy.gov/sites/prod/files/2018/02/f48/2017 peer review thermochemical conversion.pdf

Publications and Presentations since 2017 Peer Review

Slide 1 of 2

- Griffin, M.B; Iisa, K.; Wang, H.; Dutta, A.; Orton, K.A.; French, R.J.; Santosa, D.M.; Wilson, N.; Christensen, E.; Nash, C.; Van Allsburg, K.M.; Baddour, F.G.; Ruddy, D.A.; Tan, E.C.D.; Cai, H.; Mukarakate, C.; Schaidle, J.A.. Driving towards cost-competitive biofuels through catalytic fast pyrolysis by rethinking catalyst selection and reactor configuration. Energy Environ. Sci., 2018. <u>http://dx.doi.org/10.1039/C8EE01872C</u>
- Dutta, A.; Iisa, K.; Mukarakate, C.; Griffin, M.; Tan, E.C.D.; Schaidle, J.; Humbird, D. et al. 2018. Ex Situ Catalytic Fast Pyrolysis of Lignocellulosic Biomass to Hydrocarbon Fuels: 2018 State of Technology and Future Research. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5100-71954. https://www.nrel.gov/docs/fy19osti/71954.pdf.
- Tan, E.C.D.; Ruddy, D.; Nash, C.; Dupuis, D.; Dutta, A.; Hartley, D.; Cai, H. 2018. High-Octane Gasoline from Lignocellulosic Biomass via Syngas and Methanol/Dimethyl Ether Intermediates: 2018 State of Technology and Future Research. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5100-71957. <u>https://www.nrel.gov/docs/fy19osti/71957.pdf</u>.
- Dunn, J.B; Biddy, M.; Jones, S.; Cai, H.; Benavides, P.T.; Markham, J.; Tao, L.; Tan, E.; Kinchin, C.; Davis, R.; Dutta, A.; Bearden, M.; Clayton, C.; Phillips, S.; Rappé, K.; Lamers, P. Environmental, economic, and scalability considerations and trends of selected fuel economy-enhancing biomass-derived blendstocks. ACS Sustainable Chem. Eng., 2018, 6 (1), pp 561–569.
- Zhang, Y.; Sahir, A.H.; Tan, E.C.D.; Talmadge, M.S.; Davis, R.; Biddy, M.J.; Tao, L. Economic and Environmental Potentials for Natural Gas to Enhance Biomass-to-Liquid Fuels Technologies. Green Chem., 2018,20, 5358-5373.
- Iisa, K.; Robichaud, D.J.; Watson, M.J.; ten Dam, J.; Dutta, A.; Mukarakate, C.; Kim, S.; Nimlos, M.R.; Baldwin, R.M. Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading. First published Nov 24, 2017. Green Chemistry. DOI: 10.1039/c7gc02947k.
- lisa, K.; French, R.J.; Orton, K.A.; Dutta, A.; Schaidle, J.A. Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating. Fuel 207 (2017) 413–422.

Publications and Presentations since 2017 Peer Review


Slide 2 of 2

- Tan, E.C.D.; Biddy, M. An Integrated Sustainability Evaluation of Indirect Liquefaction of Biomass to Liquid Fuels. 7th International Congress on Sustainability Science & Engineering (ICOSSE '18: Industry, Innovation and Sustainability), Cincinnati, OH, August 12-15, 2018. (Presentation)
- Tan, E.C.D.; Cai, H.; Talmadge, M. Relative Sustainability of Natural Gas Assisted High-Octane Gasoline Blendstock Production from Biomass. 2017 AIChE Annual Meeting, Minneapolis, MN, October 29–November 3, 2017. (Presentation)
- Ruddy, D.A.; Nash, C.; Hensley, J.; Schaidle, J.; Farberow, C.; Cheah, S.; Tan, E.; Talmadge, M. Isobutane Activation over a Cu/BEA Catalyst and Re-Incorporation into the Chain-Growth Cycle of Dimethyl Ether Homologation. 25th North American Meeting of the Catalysis Society, Denver, CO, June 4-9, 2017. (Presentation)

Additional content for conversion pathways:

- Catalytic Fast Pyrolysis (CFP)
- High-Octane Gasoline (HOG)

Catalytic Fast Pyrolysis – SOT and Projections

Catalytic Fast Pyrolysis– Tables from MYP (1)

Processing Area Cost Contributions and Key Technical Parameters	Units	2014 SOT	2015 SOT	2016 SOT	2017 SOT	2018 SOT	2019 Projection	2020 Projection	2021 Projection	2022 Projection	2030 ^d Projection
Process Concept: Hydrocar Production via <i>Ex Situ</i> Upgr Fast Pyrolysis Vapors		Clean Pine	Clean Pine	Clean Pine	Clean Pine	Clean Pine	Clean Pine	Clean Pine	Residues + Pine	Residues + Pine	Residues + Pine
Year Dollar Basis		2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
Projected MFSP ^a	\$/GGE ^b	\$6.25	\$5.45	\$4.90	\$4.09	\$3.50	\$3.46	\$3.35	\$3.03	\$2.93	\$2.48
Conversion Contribution	\$/GGE ^b	\$3.66	\$3.30	\$3.08	\$2.82	\$2.28	\$2.25	\$2.16	\$2.10	\$2.02	\$1.34
Total Project Investment per Annual GGE	\$/GGE- <u>yr</u>	\$18.50	\$16.46	\$14.94	\$12.17	\$11.35	\$11.20	\$10.76	\$10.42	\$10.22	\$11.13
Plant Capacity (Dry Feedstock Basis)	metric tons/day	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
Total Gasoline Equivalent Yield	GGE/dry ton	42	46	51	69	72	73	74	76	77	62
Diesel-Range Product Proportion (GGE ^b Basis)	% of fuel product	15%	15%	15%	52%	52%	51%	52%	51%	52%	52%
Feedstock											
Total Cost Contribution	\$/GGE	\$2.59	\$2.15	\$1.82	\$1.27	\$1.23	\$1.21	\$1.19	\$0.93	\$0.91	\$1.14
Capital Cost Contribution	\$/GGE	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Operating Cost Contribution	\$/GGE	\$2.58	\$2.14	\$1.81	\$1.27	\$1.22	\$1.21	\$1.18	\$0.93	\$0.91	\$1.13
Feedstock Cost	\$/dry ton	\$108.43	\$98.56	\$92.69	\$87.82	\$87.82	\$87.82	\$87.82	\$70.31	\$70.31	\$70.31
Feedstock Moisture at Plant Gate	<u>₩</u> % H2O	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
Feed Moisture Content to Pyrolyzer	<u>₩</u> % H2O	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
Energy Content (LHV, Dry Basis)	Btu / Jb	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
Pyrolysis and Vapor Upgrad	-										
Total Cost Contribution	\$/GGE	\$2.34	\$2.03	\$1.84	\$1.46	\$0.99	\$0.98	\$0.96	\$0.94	\$0.91	\$1.14
Capital Cost Contribution	\$/GGE	\$0.95	\$0.82	\$0.74	\$0.65	\$0.54	\$0.54	\$0.53	\$0.51	\$0.51	\$0.63
Operating Cost Contribution	\$/GGE	\$1.39	\$1.21	\$1.09	\$0.80	\$0.45	\$0.44	\$0.43	\$0.43	\$0.40	\$0.51
Ex Situ Reactor Configuration	reactor type	fluidized bed	fluidized bed	fluidized bed	fixed bed	fixed bed	fixed bed	fixed bed	fixed bed	fixed bed	fixed bed
Ratio of Online:Regenerating Fixed Bed Reactors	ratio	N/A	N/A	N/A	2:5	2:3	2:3	2:3	2:3	2:2	2:2
Gas Phase	wt % of dry biomass	35%	36%	34%	31%	31%	31%	31%	31%	31%	31%
Aqueous Phase	wt % of dry biomass	25%	25%	24%	27%	23%	23%	23%	23%	23%	23%
Carbon Loss	% of C in biomass	2.9%	2.9%	3.4%	2.9%	5.0%	4.5%	4.0%	3.5%	3.0%	3.0%

Catalytic Fast Pyrolysis– Tables from MYP (2)

Processing Area Cost Contributions and Key Technical Parameters	Units	2014 SOT	2015 SOT	2016 SOT	2017 SOT	2018 SOT	2019 Projection	2020 Projection	2021 Projection	2022 Projection	2030 ^d Projection
Organic Phase	wt % of dry biomass	17.5%	18.6%	21.8%	28.3%	30.8%	31.0%	31.1%	31.2%	31.4%	31.4%
H/C Molar Ratio	ratio	1.1	1.1	1.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Oxygen	wt % of org. phase	15.0%	13.3%	16.8%	16.5%	18.5%	18.0%	17.6%	17.1%	16.4%	16.4%
Carbon Efficiency	% of C in biomass	27%	29%	33%	42%	45%	45%	46%	46%	47%	47%
Solid Losses (Char + Coke)	wt % of dry biomass	23%	21%	20%	14%	15%	15%	15%	15%	15%	15%
Char	wt % of dry biomass	12.0%	11.0%	12.0%	10.4%	11.7%	11.7%	11.7%	11.7%	11.7%	11.7%
Coke	wt % of dry biomass	11.0%	9.5%	8.3%	3.3%	3.3%	3.3%	3.3%	3.2%	3.2%	3.2%
Pyrolysis Vapor Quench											
Total Cost Contribution	\$/GGE	\$0.35	\$0.33	\$0.28	\$0.20	\$0.19	\$0.19	\$0.18	\$0.18	\$0.18	\$0.23
Capital Cost Contribution	\$/GGE	\$0.20	\$0.19	\$0.16	\$0.12	\$0.11	\$0.11	\$0.11	\$0.10	\$0.10	\$0.13
Operating Cost Contribution	\$/GGE	\$0.15	\$0.14	\$0.12	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.10
Hydroprocessing and Separ	ation										
Total Cost Contribution	\$/GGE	\$0.33	\$0.31	\$0.34	\$0.35	\$0.37	\$0.37	\$0.33	\$0.32	\$0.33	\$0.04
Capital Cost Contribution	\$/GGE	\$0.17	\$0.16	\$0.18	\$0.19	\$0.19	\$0.19	\$0.18	\$0.17	\$0.17	\$0.00
Operating Cost Contribution	\$/GGE	\$0.15	\$0.14	\$0.16	\$0.16	\$0.18	\$0.18	\$0.16	\$0.15	\$0.15	\$0.04
Carbon Efficiency of Organic Liquid Feed to Fuels	%	88%	90%	87%	91%	89%	89%	90%	91%	91%	91%
Hydrotreating Pressure	psia	2,000	2,000	2,000	1,900	1,900	1,900	1,900	1,900	1,900	1,900
Oxygen Content in Cumulative Fuel Product	<u>wt</u> %	0.8%	0.8%	0.8%	0.6%	0.5%	0.5%	0.5%	0.5%	0.6%	0.6%
Hydrogen Production											
Total Cost Contribution	\$/GGE	\$0.61	\$0.56	\$0.60	\$0.62	\$0.50	\$0.50	\$0.48	\$0.46	\$0.44	\$0.46
Capital Cost Contribution	\$/GGE	\$0.39	\$0.36	\$0.38	\$0.41	\$0.32	\$0.32	\$0.31	\$0.30	\$0.28	\$0.28
Operating Cost Contribution	\$/GGE	\$0.22	\$0.20	\$0.22	\$0.21	\$0.18	\$0.18	\$0.17	\$0.17	\$0.16	\$0.17
Additional Natural Gase	% LHV of biomass	0.3%	0.1%	0.2%	0.1%	0.2%	0.2%	0.4%	0.4%	0.2%	0.2%
Coproducts											
Total Cost Contribution	\$/GGE										(\$0.74)
Capital Cost Contribution	\$/GGE										\$0.06
Operating Cost Contribution	\$/GGE										(\$0.81)
Coproduct Credit	\$/GGE⁵										(\$0.83)

Catalytic Fast Pyrolysis– Tables from MYP (3)

Processing Area Cost Contributions and Key Technical Parameters	Units	2014 SOT	2015 SOT	2016 SOT	2017 SOT	2018 SOT	2019 Projection	2020 Projection	2021 Projection	2022 Projection	2030 ^d Projection
Balance of Plant											
Total Cost Contribution	\$/GGE	\$0.04	\$0.07	\$0.03	\$0.20	\$0.23	\$0.22	\$0.21	\$0.19	\$0.16	\$0.22
Capital Cost Contribution	\$/GGE	\$0.80	\$0.71	\$0.56	\$0.43	\$0.39	\$0.38	\$0.36	\$0.34	\$0.33	\$0.41
Operating Cost Contribution	\$/GGE	(\$0.76)	(\$0.64)	(\$0.54)	(\$0.23)	(\$0.16)	(\$0.16)	(\$0.16)	(\$0.15)	(\$0.17)	(\$0.20)
Electricity Production from Steam Turbine (Credit Included in Operating Cost Above)	\$/GGE ^b	(\$1.12)	(\$0.96)	(\$0.78)	(\$0.42)	(\$0.36)	(\$0.35)	(\$0.34)	(\$0.32)	(\$0.33)	(\$0.41)
Sustainability and Process Metrics	Efficiency										
Fuel and Coproducts Yield by Weight of Biomass	% w/w of dry biomass	13.7%	15.0%	16.5%	22.2%	23.1%	23.4%	23.9%	24.4%	24.8%	24.8%
Carbon Efficiency to Fuels and Coproducts	% C in feedstock	23.5%	25.9%	28.3%	38.1%	39.7%	40.2%	40.9%	41.7%	42.3%	42.3%
Overall Carbon Efficiency to Fuels and Coproducts	% C in feedstock + NG	23.5%	25.9%	28.3%	38.1%	39.7%	40.2%	40.9%	41.7%	42.3%	42.3%
Overall Energy Efficiency to Fuels and Coproducts	% LHV of feedstock + NG	30.4%	33.4%	37.0%	50.2%	52.1%	52.7%	53.7%	54.9%	56.1%	56.1%
Electricity Production	kWh/GGE	21.0	18.0	14.7	8.0	7.0	6.8	6.5	6.2	6.3	7.9
Electricity Consumption (Entire Process)	kWh/GGE	12.7	11.0	9.6	6.4	6.7	6.6	6.3	6.0	5.9	7.4
Water Consumption in Conversion Process	gal H2O/GGE	1.4	1.4	1.3	1.5	1.3	1.2	1.2	1.1	1.1	1.4

^a Conceptual design results.

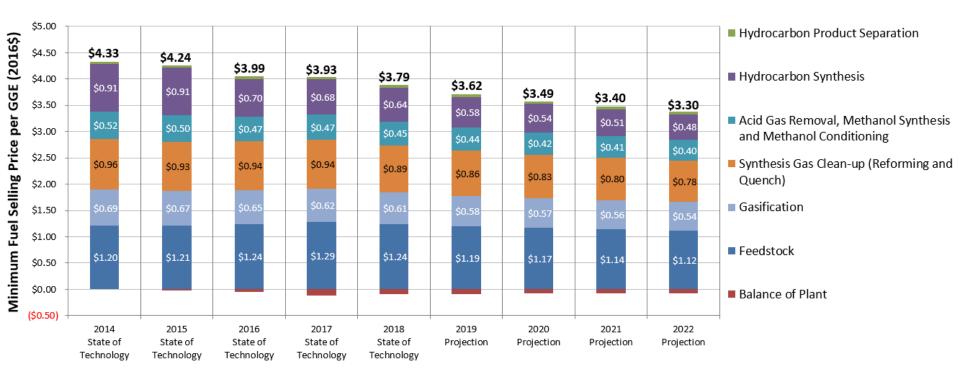
^b Gallon gasoline equivalent on a lower heating value basis.

° A negligible stream was maintained in the model to allow natural gas use if necessary.

^d 2030 projections are based on high-level estimates and will be modeled in detail in future years. It is proposed that hydroprocessing will occur at a petroleum refinery with coprocessing of the catalytic fast pyrolysis oils using existing capital. Capital for hydrogen production is included, while natural gas feed for hydrogen production is not included because credit is not taken for an equivalent amount of fuel gas from the CFP biorefinery. Coproduct credit is based on a preliminary estimate of diverting 20% CFP oil to produce coproducts

Ex Situ CFP – Sustainability Metrics Summary

>60% GHG reduction over petroleum derived gasoline per ANL analysis[†]


	FY14 SOT	FY15 SOT	FY16 SOT	FY17 SOT	FY18 SOT	FY22 Projection
Fuel Yield by Weight (% w/w of dry biomass)	13.7	15.0	16.5	22.2	23.1	24.8
Total Fuel Yield (GGE / dry US ton)	42	46	51	69	72	77
Carbon Efficiency to Fuel Blendstock (%C in Feedstock)	23.5	25.9	28.3	38.1	39.7	42.3
Energy Efficiency to Fuel (% LHV of Feedstock)	30.4	33.4	37.0	50.2	52.1	56.1
Water Consumption (Gal H ₂ O / GGE Fuel Blend)	1.4	1.4	1.3	1.5	1.3	1.1
Electricity Production (kWh/GGE)	21.0	18.0	14.7	8.0	7.0	6.3
Electricity Consumption (entire process, kWh/GGE)	12.7	11.0	9.6	6.4	6.7	5.9

Note: Metrics shown apply to conversion process only

† Reference: Cai et al. Argonne National Laboratory report, ANL/ESD-18/13, 2018.

High-Octane Gasoline – SOT and Projections

Details included in tables on following slides

High-Octane Gasoline – Tables from MYP (1)

Processing Area Cost Contributions and Key Technical Parameters	Units	2014 SOT	2015 SOT	2016 SOT	2017 SOT	2018 SOT	2019 Projection	2020 Projection	2021 Projection	2022 Projection
Process Concept: Gasification, Syngas Cleanup, Methanol/DME Synthesis, and Conversion to Hydrocarbons		Woody Feedstock								
Year Dollar Basis		2016	2016	2016	2016	2016	2016	2016	2016	2016
C5+ MFSP (per Actual Product Volume)*	\$/gal	\$4.31	\$4.17	\$3.85	\$3.74	\$3.66	\$3.50	\$3.39	\$3.31	\$3.22
Mixed C4 MFSP (per Actual Product Volume)*	\$/gal	\$3.98	\$3.91	N/A						
MFSP (per GGE)*	\$/GGE	\$4.33	\$4.24	\$3.99	\$3.93	\$3.79	\$3.62	\$3.49	\$3.40	\$3.30
Conversion Contribution (per GGE)*	\$/GGE	\$3.13	\$3.03	\$2.76	\$2.64	\$2.56	\$2.43	\$2.33	\$2.25	\$2.18
Year Dollar Basis		2016	2016	2016	2016	2016	2016	2016	2016	2016
Total Capital Investment per Annual Gallon	\$	\$15.80	\$15.94	\$11.01	\$11.54	\$11.07	\$10.61	\$10.28	\$10.03	\$9.79
Plant Capacity (Dry Feedstock Basis)	metric tons/day	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
High-Octane Gasoline Blendstock (C5+) Yield	gal/dry ton	36.2	36.4	51.4	50.0	51.4	53.0	54.1	55.1	56.0
Mixed C4 Coproduct Yield	gal/dry ton	16.3	16.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Feedstock										
Total Cost Contribution	\$/GGE	\$1.20	\$1.21	\$1.24	\$1.29	\$1.24	\$1.19	\$1.17	\$1.14	\$1.12
Capital Cost Contribution	\$/GGE	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Operating Cost Contribution	\$/GGE	\$1.20	\$1.21	\$1.24	\$1.29	\$1.23	\$1.19	\$1.16	\$1.14	\$1.12
Feedstock Cost	\$/dry ton	\$60.58	\$60.58	\$60.58	\$60.58	\$60.58	\$60.58	\$60.58	\$60.58	\$60.58
Feedstock Moisture at Plant Gate	₩t % H2O	30%	30%	30%	30%	30%	30%	30%	30%	30%
In-Plant Handling and Drying/Preheating	\$/dry ton	\$0.72	\$0.70	\$0.70	\$0.69	\$0.69	\$0.69	\$0.69	\$0.69	\$0.69

High-Octane Gasoline – Tables from MYP (2)

Processing Area Cost Contributions and Key Technical Parameters	Units	2014 SOT	2015 SOT	2016 SOT	2017 SOT	2018 SOT	2019 Projection	2020 Projection	2021 Projection	2022 Projection
Cost Contribution	\$/gal	\$0.01	\$0.01	\$0.01	\$0.01	\$0.01	\$0.01	\$0.01	\$0.01	\$0.01
Feed Moisture Content to Gasifier	wt % H2O	10%	10%	10%	10%	10%	10%	10%	10%	10%
Energy Content (LHV, Dry Basis)	Btu / Ib	7,856	7,856	7,856	7,856	7,856	7,856	7,856	7,856	7,856
Gasification										
Total Cost Contribution	\$/GGE	\$0.69	\$0.67	\$0 .65	\$0.62	\$0.61	\$0 .58	\$0.57	\$0.56	\$0.54
Capital Cost Contribution	\$/GGE	\$0.43	\$0.41	\$0.38	\$0.35	\$0.34	\$0.33	\$0.32	\$0.31	\$0.30
Operating Cost Contribution	\$/GGE	\$0.26	\$0.26	\$0.27	\$0.28	\$0.26	\$0.26	\$0.25	\$0.25	\$0.24
Raw Dry Syngas Yield	lb/lb dry feed	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Raw Syngas Methane (Dry Basis)	mol %	15.4%	15.4%	15.4%	15.4%	15.4%	15.4%	15.4%	15.4%	15.4%
Gasifier Efficiency (LHV)	% LHV	71.9%	71.9%	71.9%	71.9%	71.9%	71.9%	71.9%	71.9%	71.9%
Synthesis Gas Clean	-Up (Reforming	and Quench)								
Total Cost Contribution	\$/GGE	\$0.96	\$0.93	\$0.94	\$0.94	\$0.89	\$0.86	\$0.83	\$0.80	\$0.78
Capital Cost Contribution	\$/GGE	\$0.51	\$0.49	\$0.46	\$0.43	\$0.41	\$0.39	\$0.38	\$0.37	\$0.36
Operating Cost Contribution	\$/GGE	\$0.45	\$0.45	\$0.48	\$0.51	\$0.48	\$0.46	\$0.45	\$0.44	\$0.42
Tar Reformer (TR) Exit CH₄ (Dry Basis)	mol %	1.7%	1.7%	1.7%	1.7%	1.7%	1.7%	1.7%	1.7%	1.7%
TR CH4 Conversion	%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
TR Benzene Conversion	%	99.0%	99.0%	99.0%	99.0%	99.0%	99.0%	99.0%	99.0%	99.0%
TR Tars Conversion	%	99.9%	99.9%	99.9%	99.9%	99.9%	99.9%	99.9%	99.9%	99.9%
Catalyst Replacement	% of inventory/day	0.15%	0.15%	0.15%	0.15%	0.15%	0.15%	0.15%	0.15%	0.15%
Acid Gas Removal, N	lethanol Synthe		Conditioning							
Total Cost Contribution	\$/GGE	\$0.52	\$0.50	\$0.47	\$0.47	\$0.45	\$0.44	\$0.42	\$0.41	\$0.40
Capital Cost Contribution	\$/GGE	\$0.35	\$0.33	\$0.30	\$0.28	\$0.28	\$0.27	\$0.26	\$0.25	\$0.24
Operating Cost Contribution	\$/GGE	\$0.17	\$0.17	\$0.17	\$0.19	\$0.18	\$0.17	\$0.17	\$0.16	\$0.16

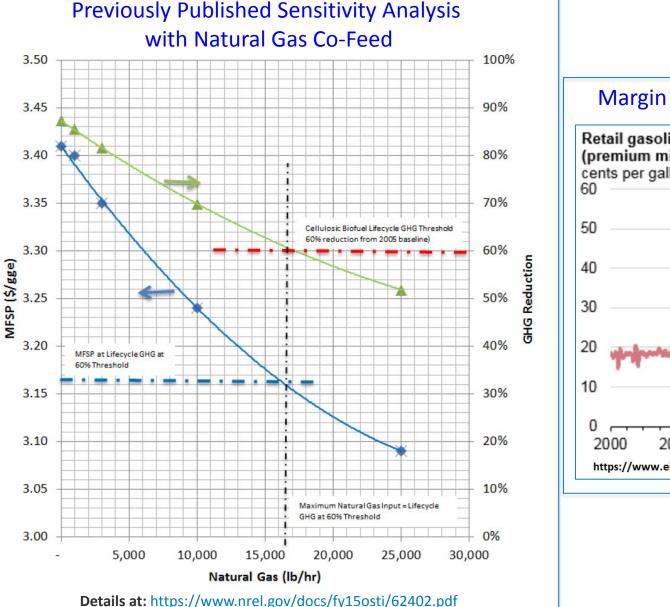
High-Octane Gasoline – Tables from MYP (3)

Processing Area Cost Contributions and Key Technical Parameters	Units	2014 SOT	2015 SOT	2016 SOT	2017 SOT	2018 SOT	2019 Projection	2020 Projection	2021 Projection	2022 Projection
Methanol Synthesis Reactor Pressure	psia	730	730	730	730	730	730	730	730	730
Methanol Productivity	kg/kg-cat/h	0.7	0.8	0.8	0.8	0.8	0.8	0.8	0.7	0.7
Methanol Intermediate Yield	gal/dry ton	143	142	138	144	141	139	137	136	134
Hydrocarbon Synthesis										
Total Cost Contribution	\$/GGE	\$0.91	\$0.91	\$0.70	\$0.68	\$0.64	\$0.58	\$0.54	\$0.51	\$0.48
Capital Cost Contribution	\$/GGE	\$0.56	\$0.56	\$0.46	\$0.44	\$0.42	\$0.38	\$0.36	\$0.34	\$0.32
Operating Cost Contribution	\$/GGE	\$0.35	\$0.35	\$0.24	\$0.23	\$0.22	\$0.20	\$0.19	\$0.17	\$0.16
Methanol to DME Reactor Pressure	psia	145	145	145	145	145	145	145	145	145
Hydrocarbon Synthesis Reactor Pressure	psia	129	129	129	129	129	129	129	129	129
Hydrocarbon Synthesis Catalyst		commercial BEA		modified B	EA with Cu as	ergy Laboratory- active metals for e improvement				
Hydrogen Addition to Hydrocarbon Synthesis		no H2 addition		al H ₂ added to ove selectivity f	hydrocarbon s	ynthesis reactor raffins relative to				
Utilization of C4 Reactor Products		coproduct	coproduct	recycle	recycle	recycle	recycle	recycle	recycle	recycle
Single-Pass DME Conversion	%	15.0%	15.0%	19.2%	27.6%	38.9%	39.2%	39.5%	39.7%	40.0%
Overall DME Conversion	%	83%	85%	83%	88%	92%	90%	89%	90%	90%
Hydrocarbon Synthesis Catalyst Productivity	kg/kg-cat/h	0.02	0.03	0.04	0.09	0.07	0.08	0.09	0.09	0.10
Carbon Selectivity to C5+ Product	% C in reactor feed	46.2%	48.3%	81.8%	74.8%	72.3%	76.3%	80.1%	83.4%	86.7%
Carbon Selectivity to Total Aromatics (Including HMB - Hexamethylbenzene)	% C in reactor feed	25.0%	20.0%	4.0%	4.0%	8.0%	6.1%	4.2%	2.4%	0.5%
Carbon Selectivity to Coke and Pre- Cursors (HMB proxy)	% C in reactor feed	10.0%	9.3%	4.0%	4.0%	4.0%	3.0%	2.2%	1.4%	0.5%

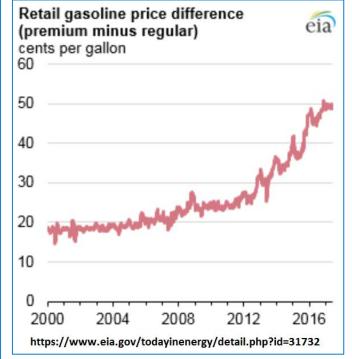
High-Octane Gasoline – Tables from MYP (4)

Processing Area Cost Contributions and Key Technical Parameters	Units	2014 SOT	2015 SOT	2016 SOT	2017 SOT	2018 SOT	2019 Projection	2020 Projection	2021 Projection	2022 Projection
Hydrocarbon Produc	t Separation								I	
Total Cost Contribution	\$/GGE	\$0.04	\$0.05	\$0.05	\$0.05	\$0.05	\$0.05	\$0.05	\$0.05	\$0.05
Capital Cost Contribution	\$/GGE	\$0.03	\$0.03	\$0.04	\$0.04	\$0.04	\$0.04	\$0.04	\$0.03	\$0.03
Operating Cost Contribution	\$/GGE	\$0.01	\$0.01	\$0.01	\$0.01	\$0.01	\$0.01	\$0.01	\$0.01	\$0.01
Balance of Plant	•		•	•			•			
Total Cost Contribution	\$/GGE	\$0.01	(\$0.02)	(\$0.05)	(\$0.11)	(\$0.09)	(\$0.09)	(\$0.08)	(\$0.08)	(\$0.07)
Capital Cost Contribution	\$/GGE	\$0.42	\$0.40	\$0.36	\$0.34	\$0.33	\$0.32	\$0.30	\$0.29	\$0.28
Operating Cost Contribution	\$/GGE	(\$0.41)	(\$0.42)	(\$0.42)	(\$0.45)	(\$0.42)	(\$0.40)	(\$0.38)	(\$0.37)	(\$0.36)
Sustainability and Pr	ocess Efficienc	y Metrics	•	•			•			
Carbon Efficiency to C5+ Product	% C in feedstock	19.3%	19.4%	25.2%	24.3%	25.5%	26.3%	26.9%	27.4%	27.9%
Carbon Efficiency to Mixed C4 Coproduct	% C in feedstock	7.0%	6.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Overall Carbon Efficiency to Hydrocarbon Products	% C in feedstock	26.3%	26.3%	25.2%	24.3%	25.5%	26.3%	26.9%	27.4%	27.9%
Overall Energy Efficiency to Hydrocarbon Products	% LHV of feedstock	37.7%	37.7%	36.6%	35.1%	36.6%	37.9%	38.8%	39.6%	40.4%
Electricity Production	kWh/gal C₅+	11.7	11.8	7.9	8.4	8.1	7.7	7.4	7.2	7.0
Electricity Consumption	kWh/gal C₅+	11.7	11.8	7.9	8.5	8.1	7.7	7.4	7.2	7.0
Water Consumption	gal H ₂ O/gal C ₅ +	12.9	10.1	3.1	3.3	3.2	3.0	2.9	2.8	2.8

* Conceptual design results.

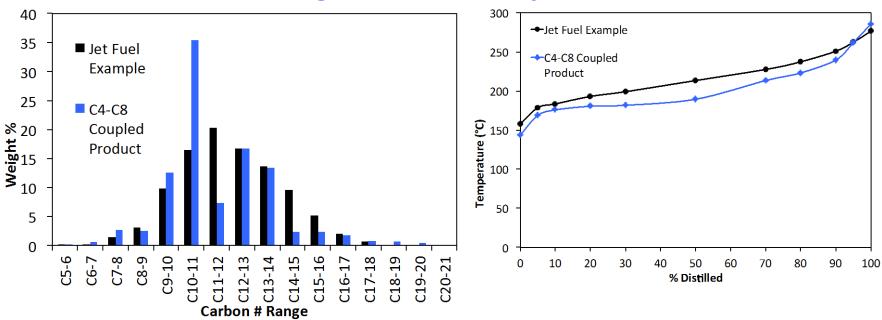

HOG – Sustainability Metrics Summary

>60% GHG reduction over petroleum derived gasoline per ANL analysis[†]


Trends in Modeled Sustainability Metrics	2015 SOT	2016 SOT	2017 SOT	2018 SOT	2022 Projection
Overall Energy-Efficiency to Hydrocarbon Products (% feed LHV basis)	37.7*	36.6	35.1	36.6	40.4
Overall Carbon Efficiency (% C in feedstock)	26.3*	25.2	24.3	25.5	27.9
Total Fuel Yield (Gal / Ton)	36.4	51.4	50.0	51.4	56.0
Total Fuel Yield (GGE / Ton)	35.8	49.5	47.6	49.6	54.7
Electricity Production (& consumed in process) (kWh / Gal C5+)	11.8	7.9	8.4	8.1	7.0
Water Consumption (Gal H2O / Gal C5+ HCs)	10.1	3.1	3.3	3.2	2.8

Note: Metrics shown apply to conversion process only. *Includes LPG product **†Reference:** Cai et al. Argonne National Laboratory report, ANL/ESD-18/13, 2018.

HOG Pathway Related Information



Margin for Premium Gasoline

HOG Pathway Sensitivity: Jet Fuel Analysis

C₄-C₈ olefin coupling produces a C₈-C₂₀ distribution of HCs, with >90% being suitable as a jet fuel blendstock

Fuel Properties	Jet Fuel ASTM D1655 Limits	Synthetic Fuel from Olefin Coupling
Viscosity (mm ² /s)	8.0 max	7.6
Freeze Point (°C)	-40 max	-81
Density (kg/m³)	775 – 840	783
LHV <mark>(</mark> MJ/kg)	42.8 min	43.8

M. Behl, et al., Energy & Fuels 29 2015 6078, NREL Milestone Report Dec 2015.