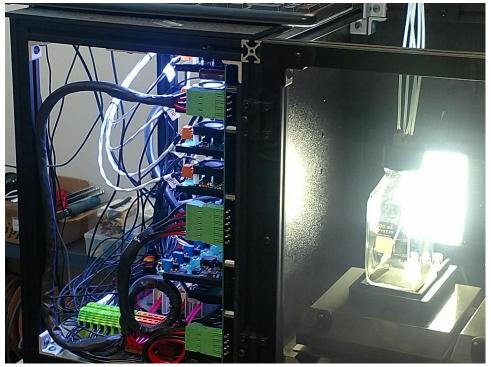
DOE Bioenergy Technologies Office (BETO) 2019 Project Peer Review

High-Throughput Directed Evolution of Microalgae and Phototrophic Consortia for Improved Biomass Yields

March 2019 Advanced Algal Systems

Matthew Posewitz

Colorado School of Mines


Collaboration with Pacific Northwest National Laboratory, Colorado State University and Global Algae Innovations

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Goal Statement

- Use directed evolution approaches as a tool for the improvement of photoautotrophic microorganism biomass yields.
- Leverage strains grown by Global Algae Innovations (GAI) to further improve productivities by enabling improved tolerance to higher pH, O₂ concentrations and temperature.
- Directed evolution has a long and successful history in industrial microbiology but has not been leveraged extensively with microalgae.
- Ultimately select strains/consortia that attain 24 g/m²/day in the spring growing season in Kauai.²

Goal Statement

Stress adaptation foci

- High Light
- High pH
- High Oxygen Stress
- High Temp
- Rapid Growth

Lee DH, Palsson BO: Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a non-native carbon source, L- 1,2-propanediol. Appl Environ Microbiol 2010, 76:4158-4168.

Hu H, Wood TK: An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol. Biochem Biophys Res Commun 2010, 391:1033-1038.

Balderas-Hernandez VE, Hernandez-Montalvo V, Bolivar F, Gosset G, Martinez A: Adaptive evolution of Escherichia coli inactivated in the phosphotransferase system operon improves co-utilization of xylose and glucose under anaerobic conditions. Appl Biochem Biotechnol 2010, 163:485-496.

Wang Y, Manow R, Finan C, Wang J, Garza E, Zhou S: Adaptive evolution of nontransgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose. J Ind Microbiol

Cakar ZP, Seker UO, Tamerler C, Sonderegger M, Sauer U: Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 2005, 5:569-578.

Yomano LP, York SW, Ingram LO: Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol 1998, 20:132-138.

Kwon YD, Kim S, Lee SY, Kim P: Long-term continuous adaptation of Escherichia coli to high succinate stress and transcriptome analysis of the tolerant strain. J Biosci Bioeng 2011, 111:26-30.

Agrawal M, Mao Z, Chen RR: Adaptation yields a highly efficient xylosefermenting Zymomonas mobilis strain. Biotechnol Bioeng 2010, 108:777-785.

Liu ZL: Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol 2006, 73:27-36.

Quad Chart Overview

Timeline

- Project start date: August 15, 2018
- Project end date: May 14, 2021
- Percent complete: 5%

	Total Costs Pre FY17* *	FY 17 Costs	FY 18 Costs \$105,504	Total Planned Funding (FY 21-Project End Date) \$2,732,421
DOE Funded	0	0	\$45,213 (43%) \$15,041 PNNL (14%)	\$1,919,178 (70%) \$540,000.00 PNNL (20%)
Project Cost Share*	0	0	\$45,250 (43%)	\$273,243 (10%)

Barriers addressed

This project specifically addresses BETO MYPP challenges in algal **Biomass Availability/Cost** (Aft-A).

Objective

Use directed evolution to improve biomass yields by improving pH, O_2 and temperature tolerances in high bicarbonate, high pH media (GAI proprietary).

End of Project Goal

Increase biomass yields by ~20% above background strains in GAI high bicarbonate/high pH media. Attain 24 g/m²/day algal biomass at the GAI facility in Kauai during the spring growing season.

1 - Project Overview

- GAI has isolated a diatom that is among their superior outdoor strains at the Kauai growth facility. Further improvements in biomass and lipid yield will benefit biofuel applications.
- Yields presently suffer putatively due to high O₂ levels during periods of high productivity, increases in pH as bicarbonate is assimilated and high temperatures during part of the day.
- Both PNNL and Mines have established expertise in building photobioreactors that can mimic the solar day in terms of light intensities and temperatures, including custom turbidostat technology built at PNNL.
- Cells can be cultured with increased O₂/pH/temperature pressures to select more robust strains under "domesticated conditions".
- Starting with an already promising strain, the goal is to further improve yields ~20%.
- Additional strains (e.g. cyanobacteria, algae) that grow well in GAI media will also be grown with selective pressures to mitigate risk.
- Establish organism consortia.

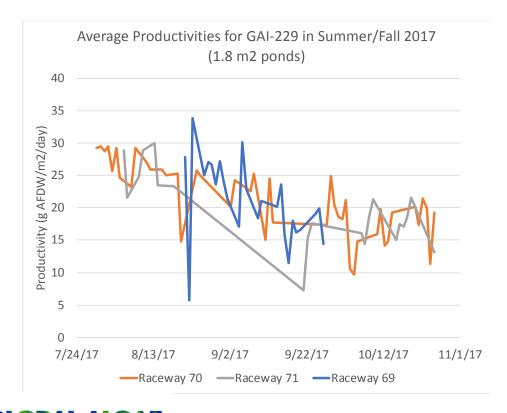
2 – Approach (Management)

- Mines is the overall lead collaborating extensively with PNNL, CSU and GAI.
- Mines/PNNL are responsible for the directed evolution of GAI-229 (diatom) and Nannochloropsis.
- PNNL is responsible for the directed evolution of cyanobacteria and photoautotroph consortia.
- GAI is responsible for outdoor growth trials.
- CSU is responsible for geographically resolved TEA and LCA.
- Weekly teleconference meetings are held to discuss data and research thrusts.
- Annual in person meetings held to assess progress and new directions.

2 – Approach (Technical)

- Technical approach
 - Grow GAI-229 (and mitigation strains) cultured in solar simulating bioreactors (high light).
 - Escalate thermal pressures to slightly exceed the highest temperatures recorded at the GAI facility.
 - Grow strains at (and slightly above) the highest O₂ levels recorded at the GAI growth facility for extended periods.
 - Evolve and probe additional strains for growth in GAI media.
 - Assemble and evaluate productivities of photoautotroph consortia.
 - Test evolved strains outdoors at the GAI growth facility.
 - Develop TEA/LCA model of evolved strains at GAI growth facility.
- Potential challenges include
 - Inability of strain(s) to adapt to the applied selective pressures.
 - Maintaining evolved strains.
- Critical success factors
 - GAI is already an established algal biomass provider. Improved biomass yields will benefit existing business applications.

Algae cultivated on CO₂ supplied from power plant flue gas since June 2014


Raceways Power plant stack Flue gas supply & return CO_2 absorber Harvest system

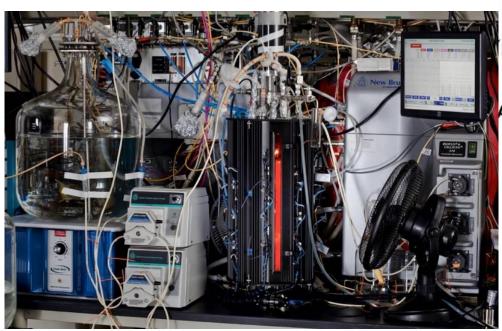
GAI-229

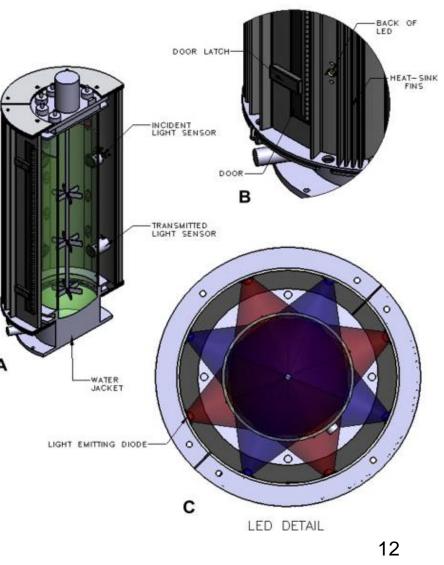
GAI-229 (*Nitzschia sp.*, a diatom) is one of Global Algae's primary production strains that grows well in GAI cultivation conditions. GAI-229 is a great producer of lipid, particularly omega-3 EPA, and is our baseline strain for this project as well as other Global Algae DOE projects.

Summer/Fall from 7/29-10/25 productivity of ~21 g/m²/day.

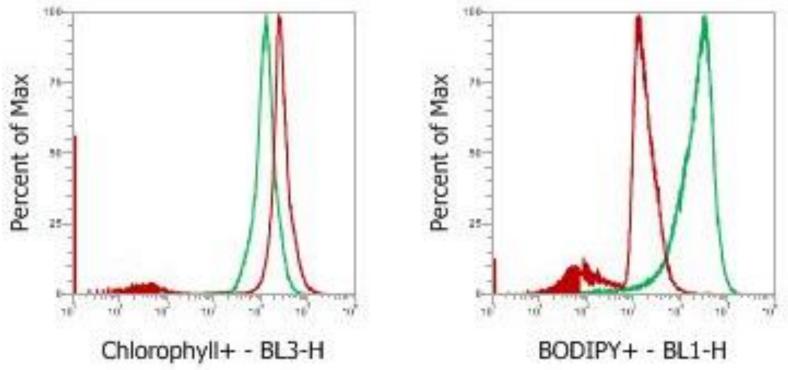
Ran 12/6-12/22/2018 Productivity reached as high as 12.87 g/m²/day in December Further outdoor trials and lab experiments will aid in optimizing. Overall, the first trial was an exciting indicator that this organism is promising

GAI-301 Kauai isolated coccoid cyanobacterium outdoors.

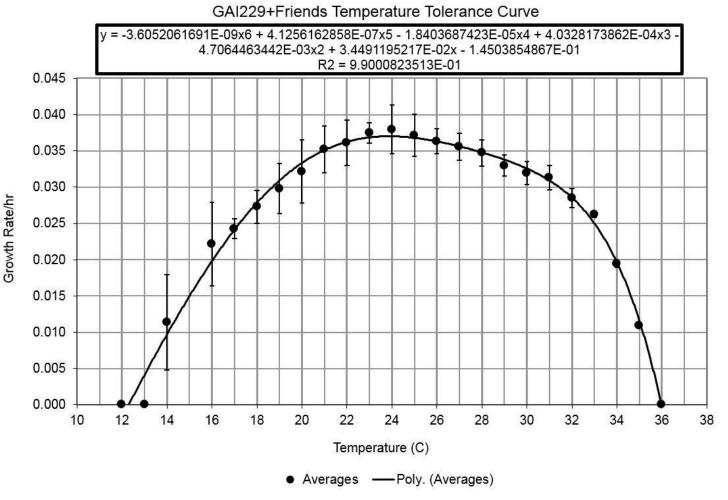


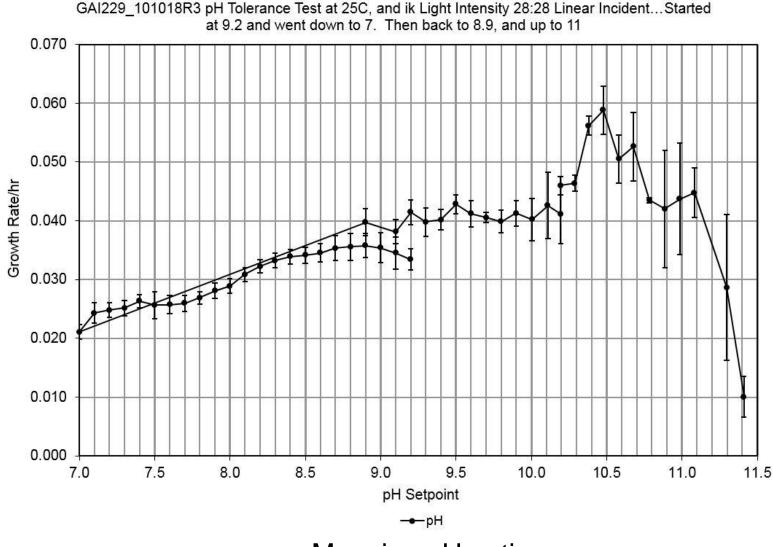

- Kickoff meeting at GAI algal farm in Kauai in August 2018
- Transfer of GAI229 to Mines and PNNL
- Successful cultivation of GAI229 in all laboratories

- Both Mines and PNNL successfully culturing GAI229
- 1st Milestone of 2 g/L biomass density attained on schedule
- Mapping pH optimum of GAI229 during dilute growth in PNNL turbidostat.



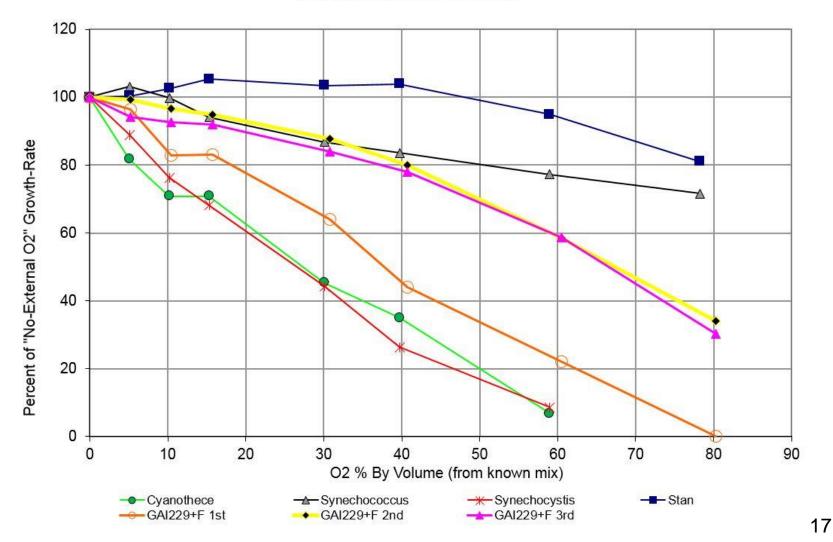
- Both Mines and PNNL successfully culturing GAI229
- Multiple parallel stress tests with high throughput automated bioreactors
- pH, O₂, temperature are the primary pressures

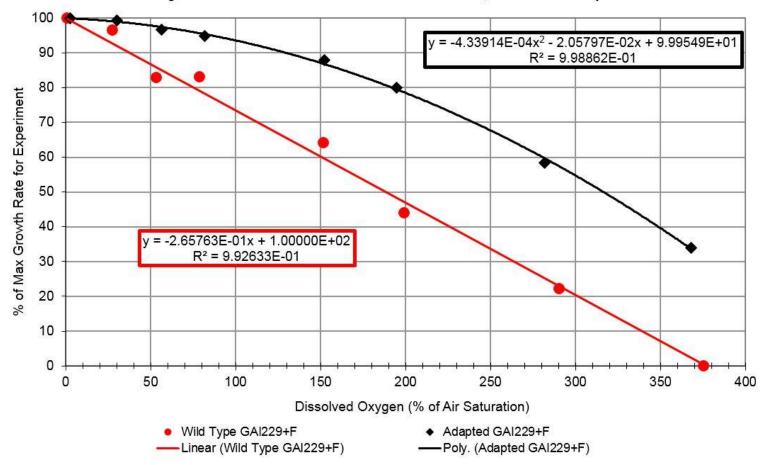




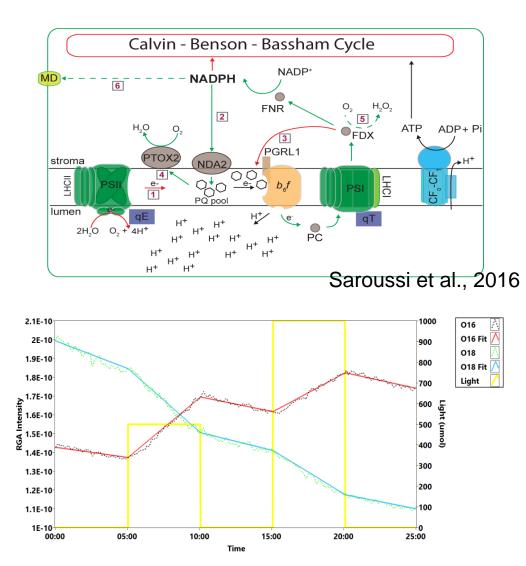
Green = Nutrient limited flask Red = Nutrient replete bottle without bubbling

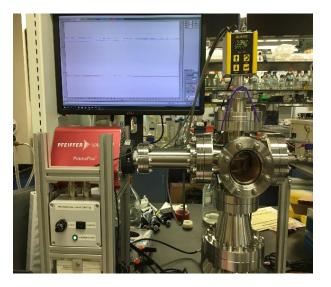
Rapid oil/chlorophyll by cell cytometry

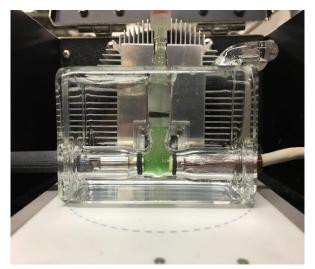

- Both Mines and PNNL successfully culturing GAI229
- 1st Milestone of 2 g/L biomass density attained on schedule
- Mapping temp/pH/O₂ optima of GAI229 during dilute growth in PNNL turbidostat.


Mapping pH optimum

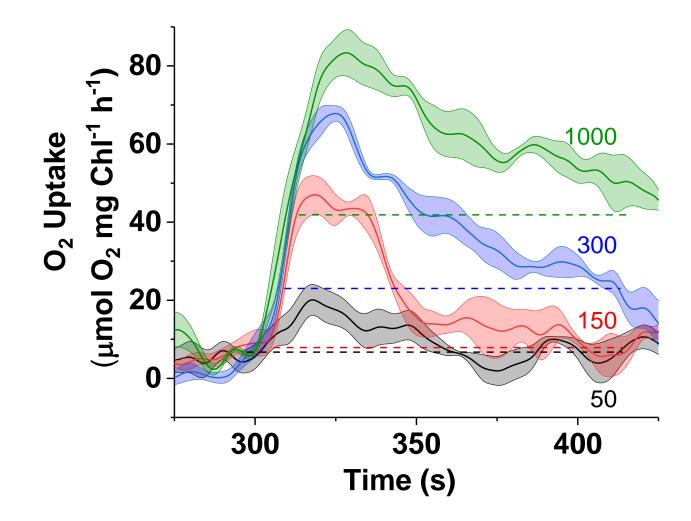
Oxygen Stress Tests at High Light

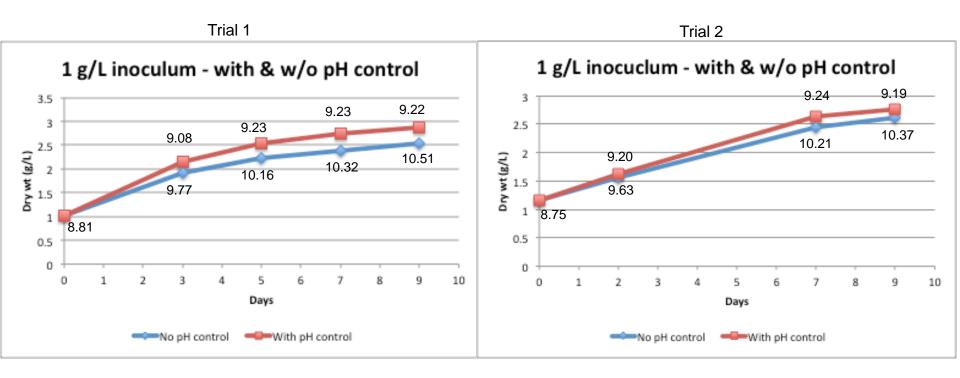

Multiple O₂ stress tests are leading to increased O₂ tolerance


Effect of Oxygen Stress on Growth Rate in Turbidostat 170 uE/m2/sec Linear Incident Light at 630 nm and 60 uE/m2/sec @ 680 nm Wild Type GAI229+F vs. "Adapted" GAI229+F 50% growth-rate went from 188.138 DOT to 316.416 DOT, for a 68.183% improvement



Enhanced O₂ tolerance


Enhanced O₂ Reduction in the Light



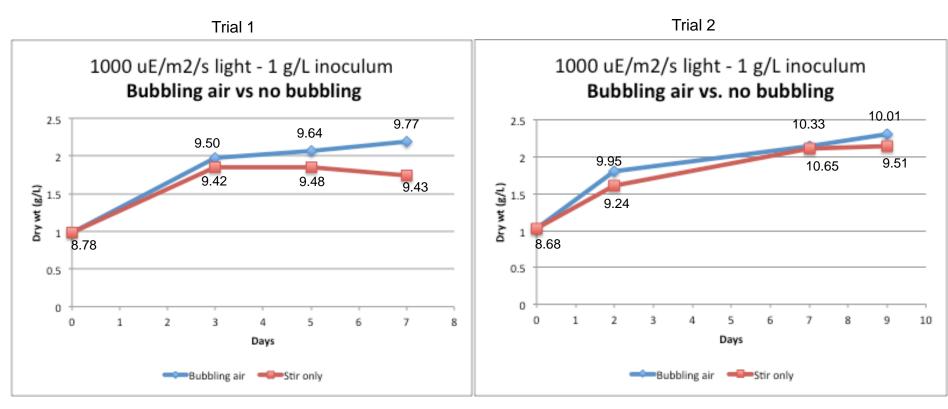
O₂ Reduction in the Light

Trial 1

Dry Wt (Inoculum size with & w/o pH Control low light)

	<u>0</u>	<u>3</u>	<u>5</u>	<u>7</u>	<u>9</u>
No pH control	1.01	1.92	2.22	2.39	2.55
With pH control	1.01	2.14	2.53	2.74	2.86

Trial 2


Dry Wt (Inoculum size with & w/o pH Control low light)

	<u>0</u>	<u>2</u>	<u>5</u>	<u>7</u>
No pH control	1.15	1.56	2.45	2.61
With pH control	1.15	1.62	2.63	2.75

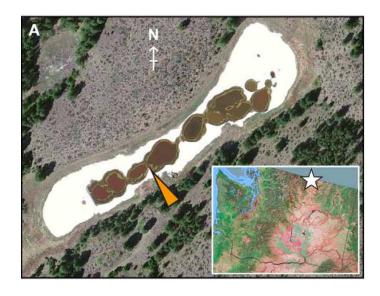
Attaining 2 g/L of biomass

* pH values are indicated at each time point on graph

Trial 1 Dry wt (Manual Light Station)

	0	3	5	7
Bubbling air	<u>.9</u> 8	<u> </u>	<u>.07</u>	<u>,</u> 2.19
		,		
Stir only	0.98	1.86	1.86	1.74

* pH values are indicated at each time point on graph

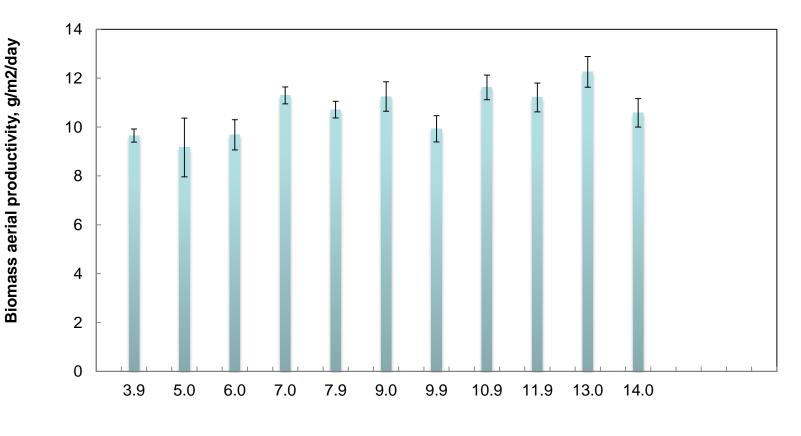

Trial 2 Dry wt (Manual Light Station)

	<u>0</u>	<u>2</u>	<u>5</u>	<u>7</u>
Bubbling air	1.03	1.81	2.14	2.31
Stir only	1.03	1.61	2.11	2.14
Stir only	1.03	1.61	2.11	2.14

Attaining 2 g/L of biomass

3 – Technical Accomplishments/ Progress/Results: cyanobacteria

- Hot Lake on July 7, 2011
- heliothermal hypersaline lake in north-central Washington
- contains extreme (>1 M) concentrations of salts
- exhibits an inverse thermal gradient, sometimes >50°C


The Hot Lake microbial mat is a source for photosynthetic communities of exceptional productivity and stress resistance

Isolation of promising cyanbacterium 23

Lindemann et al. (2013) Frontiers in Microbiology. Vol 4(1) doi: 10.3389/fmicb.2013.00323

3 – Technical Accomplishments/ Progress/Results: cyanobacteria

Cultivation time

C. stanieri HL-69 biomass areal productivity when grown in Global Algae medium

Isolation of promising cyanbacterium²⁴

3 – Technical Accomplishments/ Progress/Results: cyanobacteria

- C. Stanieri HL 69 was able to promptly acclimate to high bicarbonate medium, slight growth rate reduction was observed at 45 g/L.
- The batch cultures of adapted C. stanieri HL-69 reached high OD_{640nm} > 4 when grown in Global Algae bicarbonate medium
- This concentration corresponded to biomass concentration of up to 1.5 g/L
- There was no significant variation in optical density and biomass concentration • between the four biological replicates
- The cultures quickly reached steady state when switched to semi-continuous growth mode with dilution rate D = 0.5 days⁻¹
- The biomass density varied from $OD_{640nm} \sim 1.55-1.7$ (right after addition of fresh • medium) to $OD_{640nm} \sim 3-3.4$ (right before addition of fresh medium). This concentrations corresponded to biomass densities of ~0.45-0.55 g/L and 1.6-1.7 g/L, respectively
- The volumetric and aerial biomass productivities reached about 0.5-0.7 g/L/day and 9.5-12 g/m²/day
- The achieved biomass densities and productivities were observed at relatively low light intensity of ~85 µmol m⁻² s⁻¹

4 – Relevance

- The overarching goal is to use directed evolution to improve algal biomass yields at the GAI algal growth facility. Specifically, we are targeting productivities of 24 g/m²/day during the spring season.
- Low biomass yields remain an impediment to the development of algal biofuels.
- Increasing areal biomass yields is essential to realizing BETO targets of 22 g/m²/day during the spring growing season and 20 g/m²/day on an annualized basis.
- Directed evolution has a proven track record in a variety of biotechnology applications and should be particularly useful to the bioenergy industry.
- Increasing biomass yields will lower the cost of biomass feedstock.
- GAI is already an algal biomass provider advances in productivity will benefit their existing technologies.

5 – Future Work

- Use selective pressures to adapt GAI to the highest pH/O₂/temperature levels where cultures maintain robust growth.
- Attain necessary permits to grow Cyanobacterium stanieri strain HL69 at GAI facility in high bicarbonate medium.
- Evaluate whether species of Nannochloropsis can adapt to GAI high bicarbonate medium.
- Quantify the pH, O₂ and temperature tolerances of evolved Nannochloropsis sp.
- Quantify the pH, O₂ and temperature tolerances of evolved Cyanobacterium stanieri strain HL69.
- Quantify biomass production metrics at GAI facility
- Evolve strains/consortia that can produce 30 g/m²/d biomass is solar simulating photobioreactors (Go/No-go decision point).

Summary

Overview

Directed evolution is a powerful tool to improve biotechnology phenotypes.

Approach

By using laboratory culturing facilities that better correlate with outdoor environmental conditions, selective pressures can be imposed that improve strain performance.

Technical Accomplishments/Progress/Results

GAI229 has been transferred to both Mines and PNNL for strain characterization and phenotyping; Cyanobacterium stanieri strain HL69 has very promising growth metrics in GAI medium; Directed evolution studies are underway.

Relevance

Improved photoautotrophic biomass yields are essential to lower feedstock costs. GAI229 is already very promising and directed evolution in being probed to further improve yields.

Future work

Directed evolution is ongoing and additional strains are being tested for growth in GAI media.

Publications, Patents, Presentations, Awards, and Commercialization

Presentations

• Posewitz M.C., *Characterization of Algal Phototrophs for Potential Biotechnology Applications.* January 2019 Western Photosynthesis Conference. Friday Harbor, WA.

Research Initiated August, 2018.