Consortium for Computational Physics and Chemistry (CCPC)

Pl: Jim Parks (ORNL); Task Leads: Rajeev Assary (ANL), Larry Curtiss (ANL), Bill Rogers (NETL), Syam Madhava (NETL), David Robichaud (NREL), Peter Ciesielski (NREL), Roger Rousseau (PNNL), Asanga Padmaperuma (PNNL)

[full list of CCPC team on last slide]
Integrated and collaborative portfolio of catalytic technologies and enabling capabilities

Catalytic Technologies
- Catalytic Upgrading of Biochemical Intermediates (NREL, PNNL, ORNL, LANL, NREL*)
- Catalytic Upgrading of Indirect Liquefaction Intermediates (NREL, PNNL, ORNL)
- Catalytic Fast Pyrolysis (NREL, PNNL)
- Electrocatalytic and Thermocatalytic CO₂ Utilization (NREL, ORNL*)

Enabling Capabilities
- Advanced Catalyst Synthesis and Characterization (NREL, ANL, ORNL, SNL)
- Catalyst Cost Model Development (NREL, PNNL)
- Consortium for Computational Physics and Chemistry (ORNL, NREL, PNNL, ANL, NETL)
- Catalyst Deactivation Mitigation for Biomass Conversion (PNNL)

Industry Partnerships (Directed Funding)
- Gevo (NREL)
- ALD Nano/JM (NREL)
- Vertimass (ORNL)
- Opus12 (NREL)
- Visolis (PNNL)
- Lanzatech (PNNL) - Fuel
- Gevo (LANL)
- Lanzatech (PNNL) - TPA
- Sironix (LANL)

Cross-Cutting Support

ChemCatBio Lead Team Support (NREL)

ChemCatBio DataHUB (NREL)

*FY19 Seed Project
Our Mission: To utilize core computational capabilities across the US DOE national laboratory system *to enable and accelerate* ...

(1) the development of new materials and

(2) optimize process scale-up
to advance the bioenergy economy.

Our Vision: The computational toolset developed by CCPC facilitates the modeling of biomass industrial technologies from atomic to process scales, thereby reducing the cost, time, and risk in commercializing bioenergy technologies.

www.cpcbiomass.org

A multi-scale problem
... A multi-lab solution
Approach: Quad Chart Overview CCPC-ChemCatBio

Timeline
- Consortium Began in FY2013
- New AOP Began Oct. 1, 2018 (FY2019)
- Project end date: Sept. 30, 2021 (14% complete)

<table>
<thead>
<tr>
<th>Total Costs Pre FY17</th>
<th>FY 17 Costs</th>
<th>FY 18 Costs</th>
<th>Total Planned Funding (FY 19-Project End Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Funded</td>
<td>$11.8M</td>
<td>$3.15M</td>
<td>$3.28M/yr, $9.8M total</td>
</tr>
</tbody>
</table>

Partners:
- ORNL: $945k (28.8%)
- NREL: $1028k (31.3%)
- PNNL: $437k (13.3%)
- ANL: $437k (13.3%)
- NETL: $433k (13.2%)

Barriers addressed
- Ct-N. Multiscale Computational Framework toward Accelerating Technology Development
- Ct-F. Increasing the Yield from Catalytic Processes
- Ct-G. Decreasing the Time and Cost to Develop Novel Industrially Relevant Catalysts
- Ct-D. Advanced Bioprocess Development

Objectives
1. Accelerate discovery and optimization of cost-effective catalyst materials
2. Translate catalyst discoveries to higher technical readiness levels by optimizing catalyst particle properties and designs, and
3. Enable scale-up of bioenergy catalytic conversion technologies to process scales relevant to industry.

End of Project Goals
1. Enable ChemCatBio to develop catalysts for verification of core BETO pathways and
2. Complete a scaling transfer function for at least one conversion technology
Approach: Project Overview - Historic Timeline

- **FY13**: Computational Pyrolysis Consortium Began
- **FY14**: Accomplishment - Sub-models used in commercial software (CSFMB©)
- **FY15**: Accomplishment - Surface Phase Explorer tool released to public
- **FY16**: Accomplishment - Identified aldol pathway preference (vs. alkyl) for reduction coke formation
- **FY17**: Accomplishment - Ability to predict feedstock size-dependent pyrolysis yield demonstrated
- **FY18**: ChemCatBio Launched with CCPC, ACSC, and CCM enabling projects
- **FY19**: Accomplishment - Tech transfer of biomass feedstock model assists Forest Concepts to better convey product value to customers
- **FY20**: New AOP includes kinetics focus, new tools, & more connections
- **FY21**: New Task Structure implemented to align with BETO Verification Pathways
- **Peer Review Guidance**: Interactions with Bioprocessing Separations Consortium initiated
- **Redefinition**: Consortium for Computational Physics and Chemistry (CCPC) with focus on catalysis
Go/No-Go Stage Passed
Pyrolysis and catalysis outcomes on track

Approach: Pyrolysis Model Results Aid Industry

Accomplishment
Tech transfer of biomass feedstock model assists Forest Concepts to better convey product value to customers

Relevance: "The modeling data developed by NREL gave our company an understanding of how our production engineers can co-optimize reactors and feedstock properties to improve functional performance. This conversion data will also help our customers select the optimal feedstock for their specific conversion process."

- James H. Dooley
CTO, Forest Concepts

Approach: CCPC Connects Across BETO Program

BioPower
www.cpcbiomass.org

Accomplishment
Identified aldol pathway preference (vs. alkyl) for reduction coke formation

Accomplishment
Ability to size-dependent pyrolysis yield demonstrated

Accomplishment
Tech transfer of biomass feedstock model assists Forest Concepts to better characterize feedstocks

Peer Review Guidance
Interactions with Bioprocessing Separations

Computational Physics and Chemistry (CCPC) with focus on catalysis

New AOF includes kinetics focus, new tools, & more connections

BIOPROCESSING SEPARATIONS CONSORTIUM

Energy Materials Network
U.S. Department of Energy

ChemCatBio
Chemical Catalysis for Bioenergy

Banking Process
Modeling and Simulation

www.cpcbiomass.org
Approach: CCPC-ChemCatBio Focus of Project
Approach: Objectives, Challenges, and Success Factors

Objectives (from Annual Operating Plan):

1. **Accelerate discovery and optimization of cost-effective catalyst materials** (compositional and structural) for bioenergy applications that result in experimentally observed improvements in metrics yield, selectivity, durability, lifetime, and cost,

2. **Translate catalyst discoveries** by ChemCatBio to higher technical readiness levels by **optimizing catalyst particle properties and designs** to achieve maximum conversion efficiency and selectivity for specific catalytic conversion pathways, and

3. **Enable scale-up** of bioenergy catalytic conversion technologies to **process scales relevant to industry**, predict and optimize yield, and support BETO pathway verification and full plant techno-economic analyses.

Challenges:

- Vast array of material possibilities and combinations (zeolite, metal oxide, metal carbide, crystalline vs. defect sites, etc.)
- Complex surface science, biomass-specific chemistry, and chemisorption/diffusion phenomena

Approach: Tackle Challenges that Need Computation

- Density Functional Theory (DFT) simulation of catalyst surface chemistry and Molecular Dynamic (MD) simulation of diffusion in nanoscale pores
- **New!** Artificial Intelligence techniques for material screening to guide research being investigated

Success Factors:

- Science-based understanding of catalysis
- Success of ChemCatBio projects discovering catalysts of industry interest

Need experimental data including from Advanced Catalyst Synthesis and Characterization
Approach: Objectives, Challenges, and Success Factors

Objectives (from Annual Operating Plan):

(1) **Accelerate discovery and optimization of cost-effective catalyst materials** (compositional and structural) for bioenergy applications that result in experimentally observed improvements in metrics yield, selectivity, durability, lifetime, and cost,

(2) **Translate catalyst discoveries** by ChemCatBio to higher technical readiness levels by **optimizing catalyst particle properties and designs** to achieve maximum conversion efficiency and selectivity for specific catalytic conversion pathways, and

(3) **Enable scale-up** of bioenergy catalytic conversion technologies **to process scales relevant to industry**, predict and optimize yield, and support BETO pathway verification and full plant techno-economic analyses.

Challenges:

- A complex mixture of chemical and physical processes occur in catalyst particle and the particle is changing (coking) over time (in stream)

Approach: **Tackle Challenges that Need Computation**

- Generate comprehensive particle model capturing all chemistry and physics in process conditions (using Finite Element modeling)
- Develop reduced-order particle models for translation into process scale models

Success Factors:

- Catalysts that are practical for industry applications (optimal conversion with longevity)
- Sub-models and parameters to enable process scale simulations

Need experimental data including from Advanced Catalyst Synthesis and Characterization
Objectives (from Annual Operating Plan):

(1) **Accelerate discovery and optimization of cost-effective catalyst materials** (compositional and structural) for bioenergy applications that result in experimentally observed improvements in metrics yield, selectivity, durability, lifetime, and cost,

(2) **Translate catalyst discoveries** by ChemCatBio to higher technical readiness levels by **optimizing catalyst particle properties and designs** to achieve maximum conversion efficiency and selectivity for specific catalytic conversion pathways, and

(3) **Enable scale-up** of bioenergy catalytic conversion technologies to **process scales relevant to industry**, predict and optimize yield, and support BETO pathway verification and full plant techno-economic analyses.

Challenges:
- Multiphase flow and inherent chemistry and physics is highly complex
- Vast array of reactor designs & operational space
- Critical parameters like residence time are extremely difficult to measure experimentally

Approach: **Tackle Challenges that Need Computation**
- Utilize MFiX & other open source codes to develop comprehensive multi-phase flow reactor models
- **New!** Determine kinetic rates with dedicated effort in collaboration with experimentalists

Success Factors:
- Science-based prediction of conversion (demonstrates fundamental understanding)
- Successful scale up of industrial relevant catalysis and BETO Verification of pathways

Need experimental data including from Advanced Development and Optimization teams
Approach: Objectives, Challenges, and Success Factors

Objectives (from Annual Operating Plan):

1. Accelerate discovery and optimization of cost-effective catalyst materials (compositional and structural) for bioenergy applications that result in experimentally observed improvements in metrics yield, selectivity, durability, lifetime, and cost,

2. Translate catalyst discoveries by ChemCatBio to higher technical readiness levels by optimizing catalyst particle properties and designs to achieve maximum conversion efficiency and selectivity for specific catalytic conversion pathways, and

3. Enable scale-up of bioenergy catalytic conversion technologies to process scales relevant to industry, predict and optimize yield, and support BETO pathway verification and full plant techno-economic analyses.

The CCPC leverages DOE Basic Energy Sciences program including Catalysis Science and Advanced Scientific Computer Research (ASCR) programs.

A common shared risk is the potential to be limited by computing resources. New! This risk is being mitigated by an emerging strategy to share resources across the national labs.
Approach: Objectives, Challenges, and Success Factors

Objectives (from Annual Operating Plan):

(1) Accelerate discovery and optimization of cost-effective catalyst materials (compositional and structural) for bioenergy applications that result in experimentally observed improvements in metrics yield, selectivity, durability, lifetime, and cost,

(2) Translate catalyst discoveries by ChemCatBio to higher technical readiness levels by optimizing catalyst particle properties and designs to achieve maximum conversion efficiency and selectivity for specific catalytic conversion pathways, and

(3) Enable scale-up of bioenergy catalytic conversion technologies to process scales relevant to industry, predict and optimize yield, and support BETO pathway verification and full plant techno-economic analyses.

Our Most Impactful Success is the combination of these objectives that leads to translation of catalyst innovation to high conversion yield, selectivity, and longevity that is practical and cost-effective for industry + the Science-Based Understanding that mitigates risk for the technology.
Approach: Task Structure (Adopted in FY2018)

Task
- Catalysis Modeling at Atomic Scales
- Investigating novel catalyst material combinations and understanding surface chemistry phenomena to guide experimentalists

Task
- Catalyst Particle Modeling at Meso Scales
- Understanding mass transport of reactants/products, reaction kinetics, and coking and deactivation processes

Task
- Conversion Modeling at Process Scales
- Determining optimal process conditions for maximum yield and enable scale-up of ChemCatBio catalysts

Task
- Coordination, Integration, and Industry Outreach
- Coordinate R&D, outreach, & industry engagement
- CCPC Industry Advisory Panel
 - David Dayton (RTI), George Huff (MIT, retired BP), Jack Halow (Separation Design Group), Steve Schmidt (WR Grace), Tom Flynn (Babcock & Wilcox)

Task
- Kinetics: Fundamental Reaction Rates for Modeling
- Guide efficient technology scale-up, enabling performance gains achieved by ChemCatBio to be maintained at pilot scale
Approach: CCPC Connects Across ChemCatBio and BETO

Techno-Economic Analysis (TEA)

TEA provides BETO-wide guidance

Advanced Development and Optimization (ADO)

- ADO Process Scale Up for Production Environments
- ADO Engineering of Catalyst Scale Up
- Pilot-Scale Ex-situ CFP with DCR System

ChemCatBio Industry Advisory Board

- Catalytic Fast Pyrolysis
- Catalytic Upgrading of Biochemical Intermediates
- Liquid Fuels via Upgrading of Indirect Liquefaction Intermediates
- New! Electrocatalytic and Thermocatalytic CO\textsubscript{2} Utilization

- Advanced Catalyst Synthesis and Characterization
- New! Catalyst Deactivation Mitigation for Biomass Conversion
- Catalyst Cost Model Development

Verified Proof of Performance on Engineering-Scale Systems

Industry Stakeholders

- CCPC Industry Advisory Panel

Accelerate and Enable

Catalyst Innovation and Catalyst-Process Development
Approach: Coordination, Integration, & Outreach

Inputs
- BETO Multi-Year Program Plan
- CCPC Industry Advisory Panel
 - David Dayton (RTI), George Huff (MIT, retired BP), Jack Halow (Separation Design Group), Steve Schmidt (WR Grace), Tom Flynn (Babcock & Wilcox)
- ChemCatBio Industry Advisory Board
- BETO Peer Review
- Literature Reviews
- Invited Webinars

Outputs, Outreach, Tech Transfer
- Peer-Reviewed Publications
- Conference Presentations
- Public Webinars
- Industry Site Visits/Webinars
- Website
 - www.cpcbiomass.org
- Public Open-Source Code
 - github.com/ccpcode
- Strategic Tech Transfer

Quarterly
- Face-to-Face Meetings

Frequent
- sub-team conf calls

Participation in
- ChemCatBio events

New!
- Designated Liaisons for interfacing across BETO

End Goal is Impact to Support the Bioenergy Industry

New metal-doped zeolites
- Catalytic upgrading of pyrolysis products
- Design new Ga-doped zeolites for dehydration reaction in CFP

Selectivity of metal catalyst
- Selectivity of Ag/SiO₂/ZrO₂ catalyst towards Ethanol Upgrading

Ethanol conversion in zeolites
- Identify entropy contribution in ethanol conversion over zeolites

Diffusivity during CFP
- Studied the diffusion in both micro/mesoporous zeolites to provide guidance that results in substrate access to catalyst active sites and remove coke precursors

Data Science
- Started new machine learning capability for catalyst discovery applications

Bimetallic catalysts for selective carboxylic acid reduction
- Catalytic Upgrading of Sugars
- Attribute selective reduction of carboxylic acids using RuSn

Catalyst screening for dehydrogenation
- Develop predictive alkyl zeolite model for dehydrogenation using metal-doped BEA zeolites

Optimize catalytic activity of Metal carbides
- Design metal carbides catalysts with enhanced deoxygenation and stability via QM and screening descriptors

Co-adsorption of ketones and water on MgO surfaces
- Explain H₂O effect on ketone self-condensation on MgO(111) and MgO(100)
- Develop new SPE (Surface Phase diagrams) tool for metal catalyst
Progress: Developing a Holistic View of Inverse Bimetallic Catalysts for Selective Carboxylic Acid Reduction

- Used density functional theory (DFT) to identify RuSn structure and function
- Determined driving forces in RuSn reconstruction, proposed alternative Ni-resistant formulations
- Revealed structure-selectivity relationships for the design of new catalyst motifs: inverse bimetallic catalysts

Relevance: model predicts performance of catalytic sites by understanding structure-function relations.

CCPC-Atomic [NREL] ↔ ChemCatBio CUBI ↔ ACSC [NREL, ORNL, ANL]

Vardon et al., *ACS Catalysis*, 2017, 7 (9), 6207-6219.
Vorotnikov et al., submitted (target: Nature Catalysis)
Progress: Ethanol Conversion Under Pore Confinement

- Design of 2D-pillared MFI zeolite model
- Ethoxy-mediated conversion is energetically preferable at interior BAS at low T
- Double occupied cages predicted to be superior than single mitigating entropic bottlenecks
- Experimental validation of mechanism by DRIFTS/DSC in collaboration with Z. Li (IDL/ORNL)
- In progress: models of Y/Cu/Zn Zeolites for ethanol upgrading

Relevance: CCPC identified that catalysis was limited by entropic penalties and suggested building double BAS catalysts to enhance conversion.

CCPC-Atomic [PNNL] ↔ ChemCatBio CUBI/IDL

“Conversion of EtOH over 2D Zeolites” in preparation, 2019, Simuk, Lee, Li, Zhang, Akhade, Padmaperuma, Glezakou, Rousseau
Progress: Design Catalysts with Enhanced Activity & Stability

- Using quantum simulations, performed catalyst screening of 50 transition metal carbides/nitride surface catalysts and two best candidates were proposed (Mo$_2$C(110) & VN(100)).
- At higher catalyst surface coverage, the carbon binding is exothermic due to the graphitic carbon formation, which is a significant cause of catalytic deactivation.

Relevance: A priori identification of most active and selective catalysts for crucial deoxygenation reactions via reliable predictive modeling reduces the cost of the catalyst discovery

Quantum chemical screening for catalyst discovery for deoxygenation

CCPC-Atomic [ANL, NREL] ↔ ChemCatBio CFP

Assary et al. in preparation
Assary et al, 255th ACS Meeting, New Orleans, LA, US
Progress: Selective Ethanol Upgrading Using Ag/SiO$_2$/ZrO$_2$

- Understand how the size/shape of metal particles affects on butane/butene/butadiene production
- Oxidized Ag promotes selectivity of EtOH to butadiene, while reduced Ag (NP) favors the selectivity towards butene formation
- Validation of catalyst state/selectivity in collaboration with Dagle (IDL/PNNL)

Relevance: CCPC determine correlations between the catalyst composition, reactivity and product selectivity to validate, guide and improve catalyst design targeted to enhance control towards butadiene and/or butenes

CCPC-Atomic [PNNL] ChemCatBio IDL

“Conversion of Ethanol to Butene/Butadiene over Ag/ZrO$_2$/SiO$_2$ Catalysts” in preparation, 2019, Wilhelman, Akhade, Kovarik, Glezakou, Rousseau, Dagle, Dagle
Progress: Ag/SiO$_2$/ZrO$_2$ Performance Further Optimized with Meso Scale Model of SBA-16 Support

Objective: Develop a multi-scale modelling approach to study deactivation in the ethanol to butadiene process and guide catalyst design by exploring catalyst architecture activity lifetimes.

Approach:
- Domain-specific diffusion coefficients for reactants and products are determined using Molecular Dynamics simulations and enable the calculation of effective diffusivities through the SBA-16 microstructure.
- Transport independent kinetic parameters for a simplified reaction scheme are estimated by fitting multiscale ethanol conversion simulations to experimental data.

Relevance: Model predicts methods for increasing conversion and lifetime via reducing pore size and catalyst particle diameter (optimize architecture). IDL team pursuing experimental validation.

CCPC-Atomic [PNNL]

CCPC-Meso [NREL]

ChemCatBio IDL
Relevance: CCPC Atomic-Level Fundamental Calculations Support A Priori Catalyst Design Process

Provide guidance for next generation catalyst design
• Support architectures to enhance **selectivity** & **longevity**
• Identify key atomic-level descriptors that control catalytic **activity** & **selectivity**
Progress: Reactor Models Cover Wide Range of Scale and Type

Spouted Bed (Kinetics)

- 2” Fluidized Bed Reactor
- Vapor Phase Upgrader (Bubbling Fluidized Bed)
- ~883 sec Residence Time
- 500-900 micron particles
- 0.5 kg/hr flow rate

Davison Circulating Riser (DCR)

- ~3 sec Residence Time
- 80-100 micron particles
- 2 kg/hr flow rate

R-Cubed Reactor (TCPDU)

- ~10 sec Residence Time
- 80-100 micron particles
- 15 kg/hr flow rate
Progress: Grand Challenge of Predicting Yield Requires Many Elements to Capture Physics & Chemistry

- **Accomplished (1st Iteration)**
 - Need to capture catalyst particle residence time distribution with validated hydrodynamic reactor model

- **Accomplished (1st Iteration)**
 - Need methodology to capture particle diffusion and heat transfer effects

- **Accomplished (2nd Iteration)**
 - Need reaction kinetics for computationally manageable scheme

- **In Progress**
 - Need to account for reactant and product conversion to light gases

- **Recommended by Industry Advisory Panel**
 - Catalytic Fast Pyrolysis Conversion of Pyrolysis Vapors Over ZSM-5 Catalyst
Progress: Validation of R-Cubed Model Hydrodynamics

- MFiX Computational Fluid Dynamic models of upgrading reactors capture residence time of catalyst particles
- R-Cubed reactor team provided validation data over designed experimental matrix
- NETL cold flow reactor enables further validation of catalyst particle drag models

Relevance: Model enables accurate capture of critical residence times of catalyst particles (experimentally very difficult to measure)
Progress: Mesoscale Models of Reaction, Diffusion, and Deactivation in ZSM-5 Catalyst Particles

Objective: Develop a mesoscale simulation that decouples transport effects from kinetics of reaction and deactivation.

Approach:
- Atomic modeling results (MD) simulations to determine molecular diffusion coefficients.
- Quantitative analysis of 3D image data (XCT) used to develop model for bulk transport in heterogenous porous media.

Relevance: simulation tool enables computational investigation of catalyst architectural features such as porosity and particle size.
Progress: Close Collaboration Between Experimentalists and Modelers Enables Kinetic Rate Parameters to be Determined

Relevance: kinetics specific to biomass pyrolysis vapors and catalysts of interest are critical and fill void in technical literature

1. Experiment conducted in spouted bed reactor to capture product groups

- Milled Pine
- Pyrolysis oven
- He
- Spouted bed with catalyst particles
- MBMS detector
- Upgraded products

Experimental Partners: Calvin Mukarakate, Anne Starace

2. Kinetic rates extracted by using particle scale model to analyze data & extract rates

- Species
- Experimental Yields
- Porosities
- Diffusivities
- Architecture
- Reaction Scheme

Initial Guess
- Kinetic Rate Parameters

FEM simulation

External optimization routine

Reaction Pathway with Kinetic Rates

Reactions:
1. $PV + S1 \rightarrow HC + S1$
2. $PV + S1 \rightarrow CK + S2$
3. $PV + S2 \rightarrow FPBN + S2$
4. $PV + S2 \rightarrow CK + S3$
5. $HC + S1 \rightarrow CK + S3$
6. $PN + S2 \rightarrow CK + S3$

$S1$ – Active Zeolite Site
$S2$ – Phenolic Pool
$S3$ – Deactivated Site

Hydrocarbons (HC)
Furans, Phenols & Naphthols (FPBN)
Pyrolysis Vapors

Adjust, Broadbelt, Klein, & others part of our search*

*J. D. Adjaye (Canada), Linda Broadbelt (Northwestern Univ.), Mike Klein (Univ. of Delaware)
Progress: Application of Kinetics to R-Cubed Riser

- Kinetics generated from spouted bed reactor experiments and particle scale diffusion and heat transfer effects have been applied to R-Cubed Riser MFiX model to predict product yield.
- Our methodology has been implemented. Initial results are encouraging but await experimental validation.

Relevance: A validated model can enable translation of ChemCatBio catalyst technologies to industry-relevant scale.
Progress: Application of Kinetics to R-Cubed Riser

- Kinetics generated from spouted bed reactor experiments and particle scale diffusion and heat transfer effects have been applied to R-Cubed Riser MFiX model to predict product yield
- Our methodology has been implemented. Initial results are encouraging but await experimental validation

Relevance: A validated model can enable translation of ChemCatBio catalyst technologies to industry-relevant scale
Relevance: Translation of ChemCatBio Innovations to Industry and BETO Program Verification Success

- **Goal:**
 provide state-of-the-art methodology for translating ChemCatBio bioenergy catalytic upgrading to industry-relevant scales

- **Approach:**
 CCPC modeling approach combines science-based tools to capture key phenomena across all scales

- **Relevance:**
 - CCPC-developed kinetics fill void in bioenergy community
 - Prediction of catalytic performance at industry-relevant scales
 - Bridging function between BETO programs (ChemCatBio to Advanced Development and Optimization)
 - Capability to design and optimize reactors to enable success for BETO Verification (Catalytic Fast Pyrolysis, 2022)

Translate ChemCatBio catalysis innovations to industry-relevant scales
Future Work: Enabling Catalytic Fast Pyrolysis (CFP) Verification

Objective 1: aid CFP team in design, operation, and optimization of fixed bed reactor

Heat Transfer Effects

Regeneration: strongly exothermic. Models must be able to predict hot spots to avoid loss of catalyst activity

Pyrolysis vapor deoxygenation: information on heat of reaction is sparse but essential to successful modeling

Spatial Effects

- Complex void space topology
- Porosity and intraparticle diffusion
- Flow uniformity & packing design

Relevance: Comprehensive understanding of design and operational spaces is critical for Catalytic Fast Pyrolysis (CFP) Verification

Note: model results shown from literature search (not CCPC)
Future Work: Enabling Catalytic Fast Pyrolysis (CFP) Verification

Objective 2: develop kinetics to support fixed bed reactor modeling (Objective 1)

- Determine kinetic rates for Pt/TiO\textsubscript{2} catalysis to support fixed bed reactor models

Relevance: kinetics are needed to enable scale-up and predict performance at reactor scale for CFP Verification

Objective 3: understand strong metal surface interactions of Pt on TiO\textsubscript{2}

- Atomic scale modeling of Pt/TiO\textsubscript{2} catalyst to understand H spillover and strong metal surface interactions that affect performance

Relevance: fundamental understanding of complex interface between Pt and support enables mitigation of risks for CFP Verification

Pt/TiO\textsubscript{2} catalyst model in progress (NREL)
Future Work: Design Catalytic Reactions for Catalytic Upgrading of Biochemical Intermediates (CUBI)

Objectives:
1. Establish design principles for efficient catalysts
2. Assist experimental efforts to identify optimum conditions for reactions
3. Using verified descriptors, screen catalysts for experimental studies

Selected systems
- Lewis acid - Furfural upgrading
- Metal phosphate BDO upgrading
- Metal oxide Ketone condensation
- HZSM-5 Dehydration

Relevance: simulations of wide range of materials accelerates catalyst R&D
Future Work: Couple Atomic and Meso Scale Phenomena to Optimize Ag/SiO$_2$/ZrO$_2$ for Indirect Liquefaction (IDL)

Objective:
improve Ag/SiO$_2$/ZrO$_2$ catalyst yield and selectivity via optimization with atomic and meso scale simulations

- Leverage previous work from atomic scale and mesoscale simulations to develop multiscale simulation framework
- Elucidate the interplay of intraparticle transport phenomena and active site distribution in the bi-functional catalyst
- Use simulations to guide co-optimization of site density and support architecture to enhance yield and selectivity

Relevance: control of coupling of atomic and meso scale effects can enable optimization of catalyst
Future Work: Go/No-Go Review in FY2020

Kinetics Approach Assessment
- Demonstrate ability of process models to predict catalytic upgrading conversion efficiency and coking degradation rates

Catalysis Innovation
- Show acceleration of the catalyst innovation cycle with a net reduction in R&D cost and time

“Go” Next Steps:
- Transfer toolsets to industry including providing open-source code to public
- Apply toolset to optimize catalyst architecture, process controls, and reactor designs

“No-Go” Next Steps:
- Reassess approach

FY2019

FY2020

FY2021

“Go” Next Steps:
- Identify best approaches and keep using
- Consider new toolsets to further accelerate catalyst innovation (AI, machine learning)

“No-Go” Next Steps:
- Reassess approach
Summary: Consortium for Computational Physics and Chemistry (CCPC) for ChemCatBio

Approach: Utilize core computational capabilities to enable and accelerate...
(1) the development of new materials and (2) optimize process scale-up...
... to advance the bioenergy economy.

Atomic Scale calculations of numerous catalyst material combinations have aided experimental pathway projects.

Meso Scale catalyst particle models capture heat transfer and diffusion effects for wide range of architectures.

Process Scale reactor models capture critical hydrodynamics and calculate conversion with bioenergy kinetics.

Enables ChemCatBio teams to accelerate progress & provides fundamental understanding of catalyst surface science phenomena.

Provides means to optimize catalyst particle architecture and enables determination of kinetics and other critical parameters.

Methodology progressing for process optimization and scale-up to industry relevant scales and BETO Verification.

Future Work:
- Design/optimize fixed bed reactor system for Catalytic Fast Pyrolysis Verification
- Complete & validate reactor models with kinetics for pyrolysis vapor upgrading (ZSM-5)
- Optimize Ag/SiO₂/ZrO₂ on SBA-16 support for ethanol conversion to butadiene/butene.
Acknowledgements*

Jim Parks
Gavin Wiggins
Bruce Adkins
Stuart Daw
Emilio Ramirez
Zach Mills
Charles Finney
Jonathan Sutton*

David Robichaud
Peter Ciesielski
Seonah Kim
Lintao Bu
Tom Foust
Vassili Vorotnikov
Carrie Farberow
Mark Nimlos
Brandon Knott
Brennan Pecha
Vivek Bharadwaj
Aaron Lattanzi

Roger Rousseau
Vanda Glezakou
Asanga Padmaperuma
Simuck Yuk
Bob Weber*
Sneha Akhade*
David Cantu*

Bill Rogers
Madhava Syamlal
Xi Gao
Rupen Panday
Huda Ashfaq
Tingwen Li*
Dirk VanEssendelft*
Balaji Gopalan*

Larry Curtiss
Rajeev Assary
Mingxia Zhou
Hieu Doan
Lei Cheng
Cong Liu
Dale Pahls*

Industry Advisory Panel
David Dayton (RTI), George Huff (MIT, retired BP),
Jack Halow (Separation Design Group), Steve Schmidt (WR Grace),
Tom Flynn (Babcock & Wilcox)

A multi-scale problem
... A multi-lab solution

*includes current and former CCPC contributors

www.cpcbiomass.org
Additional Slides

Consortium for Computational Physics and Chemistry - ChemCatBio
Overall Impressions:

• There is an impressive amount of work for programs. The budget is quite high but necessary for all teams to succeed and accelerate programs. Continue what the team is doing as they are doing well. Do not change anything. There is an impressive amount of publications as well since the last review. I applaud the team and their ability to influence and impact programs in such a complex set of programs. I give this team my highest ratings.

• There is a very high impact for the cost of the project. One wonders where the resources are coming from to accomplish all that was reported and if this can be continued in the future. Predicting the performance of process from small-scale experiments requires a strong modeling effort that can identify potential problems. The phase behavior in the converter and the effect of particle and reactor hold up as the scale increases are critical factors that can be predicted using the models developed by this group. It will be particularly important to access the effects of the reactor configuration, including the shape, size inlet design, etc.

• This is a great project with lots of valuable information available for other bioenergy projects. The industry advisory panel helps focus the work on areas that will accelerate the commercialization of bioenergy technologies. The project leverages several experts from multiple laboratories and organizations. This is exciting work.

• Overall, this is a solid program with a number of significant historical contributions, as well as quite a few potentially promising contributions in the future. Models are a critical component for both communication and commercialization. CCPC’s high level of competency and expertise in this area is priceless for both BETO and the public. Focus on scalability, bio-complexity, and basic catalysis science is spot on and reflects good understanding of most of the major variables that drive commercialization in the bioenergy/biofuels industry.

• These are impressive project accomplishments to date. Congratulations! If the modeling tools can be successfully applied to the benefit of the catalytic project teams, this will have been a very valuable program.

The text on this slide is a direct quote from the 2017 Project Peer Review of the U.S. Department of Energy Bioenergy Technologies Office final report available at www.energy.gov/eere/bioenergy/downloads/2017-project-peer-review-report (pp. 291-3)
Additional Slides: Responses to Previous Reviewers’ Comments

<table>
<thead>
<tr>
<th>Reviewer Comments</th>
<th>CCPC Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>General positive impressions & comments</td>
<td>The positive feedback is appreciated. We have continued practicing the highlighted approaches including: (1) use of the industry advisory panel, (2) alignment/collaboration with biomass conversion projects, (3) open-source code and tech transfer mechanisms, (4) emphasis on capturing biomass complexity in scalable models, and (5) study of zeolite catalysis transport and deactivation mechanisms.</td>
</tr>
<tr>
<td>Tech transfer of methodologies and models to commercial partners</td>
<td>By design, we utilize open-source code and publish codes on GitHub (with a link accessible from our CCPC website) as well as results in peer-reviewed journals. This enables the potential for tech transfer of our models; however, the reviewer comments were quite useful as we have re-examined our approach for tech transfer and ways in which we can be more proactive. As a result, in FY2018, we added a specific milestone to transfer our biomass particle model (a mature model). We approached numerous entities with the intent to transfer the model. Ultimately, we succeeded in transferring the model to Forest Concepts, and the results were a major highlight for our program (see next slide and press release at www.nrel.gov/news/program/2018/bioenergy-scientists-collaborate-with-industry-to-convey-feedstock-value-improve-biomass-conversion-processes.html). We learned lessons in this process too. In this case, the industry partner was only interested in the model results (and not in being able to operate the model themselves). So, we ran the model for their case and needs.</td>
</tr>
<tr>
<td>Expanding scope to include separations</td>
<td>This recommendation from the review panel was extremely beneficial and insightful. We responded by scheduling a series of web conferences with the Bioprocessing Separations Consortium (SepCon) in which we discussed CCPC modeling capabilities and SepCon modeling needs. The result was a vast array of opportunities where existing CCPC modeling toolsets and capabilities could be adapted to meet SepCon modeling needs. We initiated starter projects in FY2018 to begin progress in this area. We faced limitations early on due to the fact that no resources were identified in the BETO Separations program for modeling, and our CCPC-ChemCatBio resources are designated for supporting the ChemCatBio objectives. As a result, we have formed a more holistic strategy for the CCPC to serve and coordinate modeling needs across BETO. We are working closely with SepCon and BETO Technology Managers to specifically identify resources to support modeling for separations in the next AOP cycle for SepCon which begins in FY2020. And, we have designated a liaison to SepCon to foster the efforts.</td>
</tr>
</tbody>
</table>

Three comment areas and associated responses on highlighted on this slide. Other comments and our responses can be found in the 2017 Project Peer Review of the U.S. Department of Energy Bioenergy Technologies Office final report available at www.energy.gov/eere/bioenergy/downloads/2017-project-peer-review-report (pp. 291-3)
Objective: Leverage validated pyrolysis models to support industry partners

Approach:
• Models were parameterized to represent a range of Forest Concepts’ feedstock products
• FC used results to communicate value of precision feedstocks to customers

Relevance: "The modeling data developed by NREL gave our company an understanding of how our production engineers can co-optimize reactors and feedstock properties to improve functional performance. This conversion data will also help our customers select the optimal feedstock for their specific conversion process."

- James H. Dooley
 CTO, Forest Concepts

Industry Partner: Forest Concepts
The last Go/No-Go Review for this project was in FY2016. The stage was passed (Go), and technical results were shared at the 2017 Peer Review.

The next Go/No-Go Review for the project is scheduled for FY2020 and is summarized in the table below (verbatim from Annual Operating Plan).

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Criteria</th>
<th>Date</th>
</tr>
</thead>
</table>
| **Kinetics Approach Assessment** | Based on modeling at atomic, meso, and process scales, demonstrate a technique for predicting conversion at commercially-relevant scales for ChemCatBio catalytic upgrading processes. The outcome of this go/no-go decision will determine:
(1) is the CCPC-CCB approach toward kinetics definition in highly complex bioenergy applications valid and feasible; should more extensive approaches be pursued such as micro-kinetics-based approaches. | Using kinetics data extracted from data from designed experiments with ChemCatBio colleagues, demonstrate ability of process models to predict catalytic upgrading conversion efficiency and coking degradation rates. | 4/30/2020 |
| **Catalysis Innovation** | In close collaboration with ChemCatBio experimentalists, modeling will be utilized to accelerate catalyst innovation. | Using an experiment-only base case as reference, show acceleration of the catalyst innovation cycle (design to experimental results) with a net reduction in R&D cost and time to results. | 4/30/2020 |
Note: The CCPC by design produces open-source code models that are publicly available on GitHub (github.com/ccpcode) with a link to the site on the CCPC website (www.cpcbiomass.org). Therefore, our tech transfer output is primarily in the form of the open-source code, and we cite here the resulting commercial impacts and open source codes made publicly available.

Tech Transfer/Commercial Impact (since 2017 Peer Review):

- Tech transfer of biomass feedstock pyrolysis model to aid Forest Concepts in product characterization

Tech Transfer/Commercial Impact (since project inception):

- Surface Phase Explorer Website-Based Tool (spe.nrel.gov)
 - The CCPC made a publicly available web-based tool called “Surface Phase Explorer” which enables: (1) construction of surface ab initio phase diagrams for single species adsorbing to a surface as well as coadsorption of two species to a surface and (2) visualization of the Wulff Construction of the surface at any temperature and pressure. [Vassili Vorotnikov et al.]

- Commercial Software Impact: CSFMB©/CeSFaMB™
 - The CCPC assisted Prof. de Souza-Santos (Brazil) in including biomass pyrolysis chemistry into new version of CSFMB© commercial software (see www.csfmb.com) [C. Stuart Daw et al.]
GitHub Open-Source Code and Supporting Documentation (since 2017 Peer Review):

- github.com/ccpcode/chemics-reactors
 - A Python-based program for implementing network models of multiphase reactors (beta version) [Jonathan Sutton et al.]

- github.com/ccpcode/kinetic-schemes
 - A repository of various kinetic reaction schemes for biomass pyrolysis based on the literature. The kinetics are presented in Python-based code and include the CCPC kinetics which are a combination of the Di Blasi (1993), Chan (1985), and Liden (1988) kinetic schemes. [Gavin Wiggins et al.]

- github.com/ccpcode/docs-tcpdu
 - Supporting documentation for the NREL ThermoChemical Process Development Unit (TCPDU) [Gavin Wiggins, Katie Gaston et al.]

- github.com/ccpcode/docs-2fbr
 - Supporting documentation for the NREL 2” Fluidized Bench Reactor (2FBR) and associated Vapor Phase Upgrading reactor [Gavin Wiggins, Rick French et al.]

- github.com/ccpcode/nrel-2fbr-particles
 - Particle characterization data for catalyst particles used in experiments and models of the NREL 2” Fluidized Bench Reactor (2FBR) Vapor Phase Upgrading reactor [Gavin Wiggins, Rick French et al.]

GitHub Open-Source Code and Supporting Documentation (since project inception):

- github.com/ccpcode/low-order-reactor
 - A low-order reactor model that utilizes a CSTR (continuously stirred tank reactor) modeling approach to estimate fast pyrolysis yields from bubbling fluidized bed reactors based on a give particle size distribution and associated low-order particle sub-model. [Gavin Wiggins, C. Stuart Daw et al.]

- github.com/ccpcode/low-order-particle
 - Python-based low-order particle model for modeling heat transfer and pyrolysis as a function of particle size and shape. This sub-model was developed based on high-order models of particle pyrolysis with COMSOL and feeds the low-order reactor model above. [Gavin Wiggins, Peter Ciesielski et al.]
Awards

Awards (since 2017 Peer Review):

• Poster Presentation Award to Emilio Ramirez for Second Place in the Student Research Poster Presentation category at the Thermal and Catalytic Sciences (TCS) Symposium for Biofuels and Bioproducts, October 8-10, 2018.

 Note: Emilio is a Ph.D. graduate student at the University of Tennessee who is conducting his dissertation research in multiphase modeling of fast pyrolysis in bubbling fluidized beds (anticipated graduation in May 2019). His poster was entitled “Computational study on biomass fast pyrolysis: Hydrodynamic effects in a laboratory-scale fluidized bed”.

Emilio Ramirez (second from left) with poster presentation award from TCS2018
Publications (with publication date since January 1, 2017):

Publications [26 since January 1, 2017; 55 Total since Project Inception]

Publications (with publication date since January 1, 2017) [cont. from previous slide]:

Publications [26 since January 1, 2017; 55 Total since Project Inception]

Publications (with publication date since January 1, 2017) [cont. from previous slide]:

Presentations

Presentations since January 1, 2017: 30

Presentations since Inception of Project (2013): 95 Total
Publications and Presentations

Summary Graph of Publications and Presentations To-Date for Project

BETO Consortium for Computational Physics and Chemistry
Publications and Presentations

Cumulative Publication/Presentation Counts

- Cumulative Publications
- Cumulative Presentations

Calendar Year

*2019 data at Feb. 14, 2019