

Power Electronics Program Kickoff

Modular Wide-bandgap String Inverters for Low-cost Medium-voltage Transformer-less PV Systems

Brian Johnson (PI), Daniel Kirschen: University of Washington

Dragan Maksimovic, Robert Erickson: University of Colorado Boulder

Gabsu Seo: National Renewable Energy Laboratory

Kraig Olejniczak: Wolfspeed

The Main Idea: A Circuits to Systems Approach

- A dc to three-phase ac **C**onverter + **C**ontrol (C²) building block is proposed
- Each C² block performs string-level PV maximum power point tracking
- The ac sides of each C² block are cascaded to obtain transformerless utility-scale inverters

Comparison to State-of-the-Art Utility Inverters

Conventional:

Three-phase string inverters
+ line frequency transformers

Proposed:

Distributed wide-bandgap electronics
+ high frequency magnetics

Inverter×Transformer peak efficiency	$0.983 \times 0.99 = 97.3\%$	99.1%
Inverter×Transformer	$0.982 \times 0.99 = 97.2\%$	99.0%
CEC efficiency	0.982^0.99 - 97.276	
Inverter Capacitance	10 J/kW	1 J/kW
Inverter ac voltage	600 Vac	13.2 kV ac
Transformer needed?	Yes	No
Inverter isolated?	No	Yes

The Building Block

The Building Block

AC side connects to

The Building Block: Converter Innovations

The Building Block

Constant power delivery: $P_{\rm a} + P_{\rm b} + P_{\rm c} = P_{\rm dc} = {
m constant}$

- Simplifies controls
- Minimizes capacitive energy storage

The Building Block

Take a closer look at controls

The Building Block: A Complete Controls Architecture

^[1] Achanta, Johnson, Seo, Maksimovic, "A multilevel dc to three-phase ac architecture for photovoltaic power plants," in IEEE TEC, 2018.

^[2] Achanta, Johnson, Maksimovic, "Cascaded quadruple active bridge structures for multilevel dc to three-phase ac conversion," in APEC, 2018.

Decentralized Power Sharing

Simulations of a 13.2kV, 600kW system with 6 blocks

A decrease in power from block #6

Failure in block #6

Preliminary Experiments

One C² module:

primary

Three cascaded blocks:

Decentralized Dc-link Controls & Multilevel Waveforms

Regulated dc link voltage at block level and multilevel waveforms across stack

Maximum Power Point Tracking

Startup at zero power with PV

Convergence to maximum power point

An LCOE-driven Optimization Framework

Challenges:

LCOE contains many cost contributions (e.g., BOS, wiring, PV modules, energy)

$$LCOE = \frac{C}{E} = \frac{C_0 + \sum_{t=1}^{t=T} \frac{C_t}{(1+i)^t}}{8760 \cdot P_{rated} \cdot \gamma \cdot \sum_{t=1}^{t=T} \frac{1}{(1+i)^t}}$$

Our Approach:

- Compute "relative cost improvement" in comparison to state of the art benchmarks
- Proposed optimization framework clearly ties converter design choices to LCOE impacts

Design for lowest LCOE

<u>Existing</u>: "Modular Multilevel Converter" (MMC)

<u>Existing</u>: "Modular Multilevel Converter" (MMC)

X Pulsating single phase power for each stack

Proposed: Cascaded C² blocks

✓ Constant power transfer

<u>Existing</u>: "Modular Multilevel Converter" (MMC)

- X Pulsating single phase power for each stack
- X Large capacitor banks needed

- ✓ Constant power transfer
- ✓ Minimal capacitance needed

<u>Existing</u>: "Modular Multilevel Converter" (MMC)

- X Pulsating single phase power for each stack
- X Large capacitor banks needed
- X Centralized capacitor balancing controls

- ✓ Constant power transfer
- ✓ Minimal capacitance needed
- ✓ Streamlined controls

<u>Existing</u>: "Modular Multilevel Converter" (MMC)

- X Pulsating single phase power for each stack
- X Large capacitor banks needed
- X Centralized capacitor balancing controls
- X Medium voltage dc input voltage needed

- ✓ Constant power transfer
- ✓ Minimal capacitance needed
- ✓ Streamlined controls
- ✓ Low voltage dc (LVDC) supported

Timeline and Objectives

Demo on NREL's Controllable Grid Interface

Anticipated Outcomes

- First medium voltage demonstration of C² technology
- Lowest LCOE design and accompanying design framework
- Suite of intellectual property + publications
- A comprehensive market competitiveness comparison
- Industry Advisory Board + final workshop will pave path to adoption

Thanks for your attention!

