

Power Electronics Program Kickoff

M4 Inverter:

Modular, Multifunction, Multiport & Medium **Voltage Utility Scale SiC PV Inverter**

PI: Dr. Alex Q. Huang,

Dula D. Cockrell Centennial Chair in Engineering

University of Texas at Austin

What is an M4 Inverter

Major Innovations

- Elimination of Line Frequency Transformer
- 2. Novel Tri-Active Half Bridge (TAHB)
 Multiport Inverter
- 3. Advanced SiC Power Module
- 4. Modular Architecture
- High Voltage Battery Energy Storage System with high C charge/discharge rate
- 6. Multi-functionalities of the M4 Inverter

1 MVA M4 Inverter

#1: Elimination of Line Frequency Transformer

- \$20/kVA cost reduction
- 1% loss reduction
- 50% size reduction
- 30% Installation cost reduction
- 10% O&M cost saving

#2: Multiport Inverter

- High frequency 3-winding transformer
- Single-stage DC/AC conversion
- Zero-voltage switching
- 2% higher efficiency than IGBT solution
- Controllable power flow between each port.
- Modular design for N+1 redundancy

#3: Advanced SiC Power Module

- Ultra-low loss, low inductance packaging
- High-frequency, ultra-fast switching operation
- Zero reverse-recovery current from diode
- Zero turn-off tail current from MOSFET
- Normally-off, fail-safe device operation
- Ease of paralleling
- AlSiC baseplate and Si3N4 AMB insulator, enhancing ruggedness with respect to thermal cycling

- 1700V/2.3 mohm HT-3XXX
- 900V/2.5 mohm HT-3XXX

#4: Modular Architecture

- Mass production to reduce manufacturing cost
- X+2 redundancy
- □ Fault isolation mechanism
- Evenly distributed thermal stress
- Adaptive lifetime extension
- Hot-swappable installation for reduced O&M
- Easy and fast replacement
- Fast DC cap replacement
- Converter unit reuse to lower ownership cost

#5: Advanced Battery Energy Storage System

- □ SCiBTM lithium titanium battery
- Excellent operating characteristics with respect to safety
- Long lifetime (15000-20000 cycles or 15 years)
- Rapid charging and discharging rate (up to 8C)
- Battery voltage self-balance
- Tight integration of the BMS with M4 Inverter for better system protection

Proposed 900V Battery System

Cost Benefit Analysis: Pathway for LCOE Reduction

Table 1: Summary of the M4 Inverter innovations and their impacts on LCOE reduction.

LCOE Reduction Strategy in the M4 Inverter	Estimated LCOE Reduction Potential
#1 Elimination of LFT and associated BOS and O&M	6.8%
#2 1% higher efficiency	2%
#3 Higher reliability to 35 years	15%
#4 Lower O&M cost by 50%	15%
#5 Built-in utility scale inverter for storage	3.8%
#6 Optimize the Inverter rating to 50%	1.9%
#7 Additional functionalities	63%
#7.1 STATCOM functionality	4%
#7.2. Time shifting	Currently not attractive in reducing LCOE
#7.3 ERCOT Fast Responding Regulation Services (FRRS)	59%
#4 Synthetic inertia	TBD
Total LCOE reduction potential	>100%

ERCOT Fast Responding Regulation Services (FRRS)

LCOE calculation change

 $LCOE_{Benchmark}$ sum of initial system cost + 0&M cost over lifetime sum of electrical energy produced over lifetime

LCOE_{Improved} $sum\ of\ initial\ system\ cost + 0\&M\ cost\ over\ lifetime + new\ system\ cost - sum\ of\ benefit$ sum of electrical energy produced over lifetime

ERCOT Fast Responding Regulation Services (FRRS)

```
 LCOE_{lmp-F3} \\ = \frac{sum\ of\ initial\ system\ cost + 0\&M\ cost\ over\ lifetime + \textit{new\ system\ cost} - \textit{sum\ of\ benefit}}{sum\ of\ electrical\ energy\ produced\ over\ lifetime}
```


 $= \frac{sum \ of \ initial \ system \ cost + 0\&M \ cost \ over \ lifetime + (M4 \ extra \ cost + battery \ cost) - (Income \ from \ Reg \ service + LFT \ cost)}{sum \ of \ electrical \ energy \ produced \ over \ lifetime}$

$$= \frac{\sum_{t=1}^{N_{Imp-F3}} I_{b}(t) + M_{b}(t) + [I_{M4e}(t) + M_{M4e}(t) + I_{batt-FRRS}(t) + M_{batt-FRRS}(t)] - [FRRS(t) + I_{LFT}(t) + M_{LFT}(t)]}{(1+r)^{t}}$$

$$\sum_{t=1}^{N_{Imp-F3}} \frac{E_{Imp-F3}(t)}{(1+r)^{t}}$$

 $I_h(t)$ Benchmark investment expenditures in the year t $M_h(t)$ Benchmark operations and maintenance expenditures in the year t $I_{M4e}(t)$ M4 inverter extra investment expenditures in the year t $M_{M4e}(t)$ M4 inverter extra operations and maintenance expenditures in the year t Battery in the FRRS function's investment expenditures in the year t $I_{batt-FRRS}(t)$ Battery in the FRRS function's operations and maintenance expenditures in the year t $M_{hatt-FRRS}(t)$ FRRS(t)Income from FRRS in the year t $I_{I,FT}(t)$ LFT's investment expenditures in the year t $M_{LFT}(t)$ LFT's operations and maintenance expenditures in the year t Improved system's electrical energy generated in the year t in function #3 $E_{Imp-F3}(t)$ N_{Imp-F3} Improved system's lifetime in function #3

Project Plan

Fig. 1: Organization and work package structure of the proposed project

Three Go-/No-GO Milestones are defined for BP1

Fig. 2: High level schedules of each task

Modular Converter Development Underway (Task3)

- BP1 Goal: > 95% peak efficiency
- BP2 Goal: >97% peak efficiency

Offline Simulation (PF=1 100 kW AC Output)

Output/Grid Voltage (60Hz)

