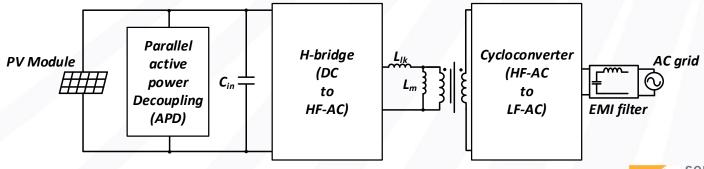


Power Electronics Program Kickoff

Compact and Low-cost Microinverter for Residential Systems

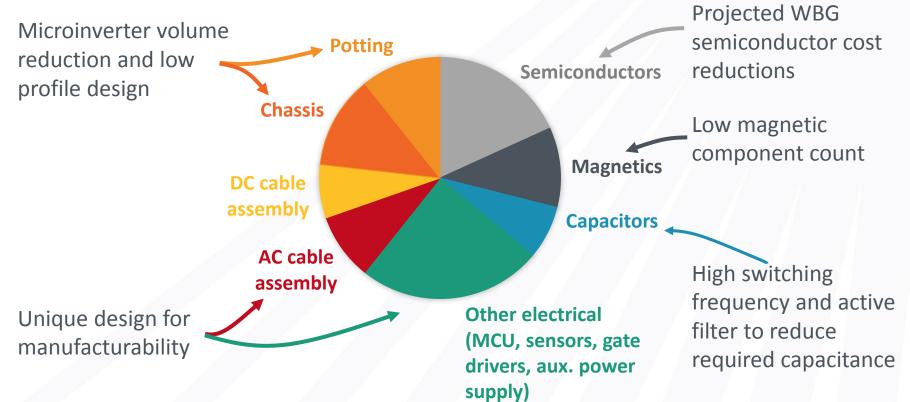
University of Maryland, College Park

Project Goals

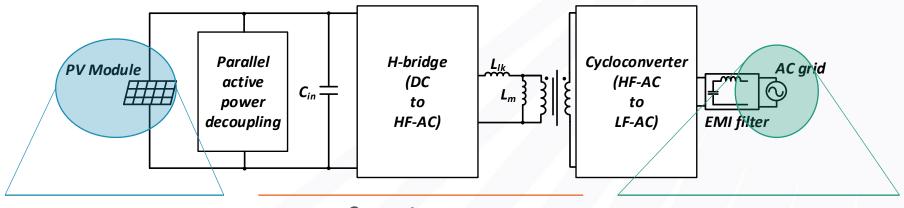


- Holistic design for manufacturing approach for residential microinverters
 - 1. Reduce microinverter BOM cost ($\leq $0.07/W$)
 - 2. Enhanced efficiency ($\eta_{CEC} \ge 97\%$)
 - 3. High power density ($\geq 0.61 \text{W/cm}^3$)
 - 4. High specific power (≥ 200W/kg)
 - 5. High reliability (250,000 hours MTTF)

Proposed Technology



- Proposed solution (≤ \$0.07/W)
 - WBG and Si CoolMOS semiconductors
 - No electrolytic capacitors
 - Fully integrated and planar magnetics
 - Active filter for 120Hz power decoupling
 - Soft-switching of main circuit and APD stage


Cost Breakdown and Major Cost Reductions

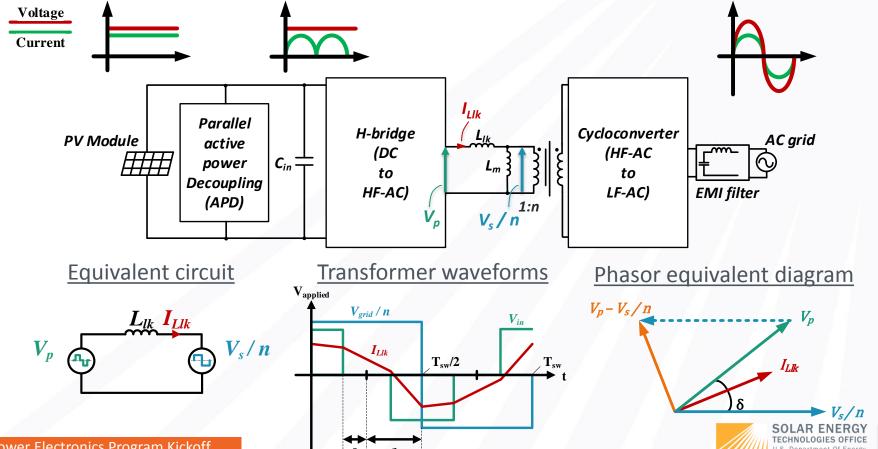
Converter Specifications

Input	PV	specs.
-------	----	--------

V _{mpp} [V]	25-60
P _{mpp} [W]	400
η _{mpp} [%]	99

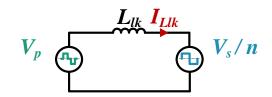
Converter specs.

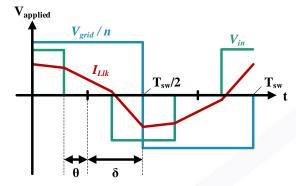
f _{sw} [kHz]	~300
ZVS	S ₁ -S ₈
η _{max} [%]	≥ 97
η _{CEC} [%]	96.9

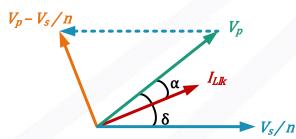

Output specs.

V _{ac} [V _{rms}]	240
IEEE1547	THD < 4%
CA Rule 21 P1 & UL1741	Smart grid features

Smart grid features: Voltage/frequency ride through, fixed and dynamic power factor, soft-start reconnection, ramp-rate controls, anti-islanding


Principle of Operation





Control

Fundamental voltage amplitudes (FHA)

$$V_s/n \qquad < V_p >_1 = \frac{4V_{in}}{\pi}\cos(\theta)$$

$$< V_S >_1 = \frac{4V_{grid,pk}}{n\pi} \sin(\omega_{line}t)$$

Power transfer

$$P = V_p i_L \cos(\alpha) = A\cos(\theta) \sin(\delta) \sin(\omega_{line}t), where A = \frac{4V_{in}V_{grid,pk}}{n\pi^3 f_{sw}L_{lk}}$$

Active power control (PFC)

$$P = A\cos(\theta)\sin(\delta)\sin(\omega_{line}t) = V_{grid,pk}I_{o,pk}\sin^2(\omega_{line}t)$$

$$\rightarrow \cos(\theta)\sin(\delta) = B\sin(\omega_{line}t), where B = \frac{V_{g,pk}I_{o,pk}}{A}$$

- Conclusions
 - θ controls current shaping (varies over line cycle)
 - δ controls average power delivery (constant over line cycle)

Main Tasks - Budget Period 1

1. Hardware Benchmark Prototyping and Proof of Concept

- 1. Circuit analysis, loss calculation, modeling and simulation, component selection
- 2. Auxiliary power supply design and generate schematic
- 3. Component placement, thermal simulation, reliability analysis, layout design
- 4. Build prototype, electrical testing and verification plan, design performance analysis

Go/No-Go #1: BOM cost, reliability analysis, and electrical performance are on track to meet proposed specifications

Main Tasks – Budget Period 2

2. Mechanical Design and Packaging

- 5. Thermal interface and potting material analysis, enclosure design and prototyping
- 6. Enclosure thermal and electrical testing

Go/No-Go #2: Enclosure cost, thermal, and electrical performance meet proposed specifications

Main Tasks – Budget Period 3

3. Compliance and Testing

- 7. Project metric evaluation, environmental testing, safety regulation, and EMI demonstrations
- 8. Field trials and data collection

Go/No-Go #3: Microinverter LCOE, safety, EMI performance, grid compliance, and field trials meet proposed specifications

Questions?

