

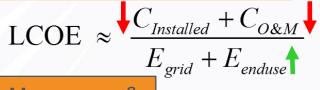
Power Electronics Program Kickoff

A Reliable, Cost-Effective Transformerless MV Inverter for Gird Integration of Combined Solar and Energy Storage

Yue Zhao Ph.D.,

Assistant Professor, University of Arkansas

Project Team:



Outline of Presentation

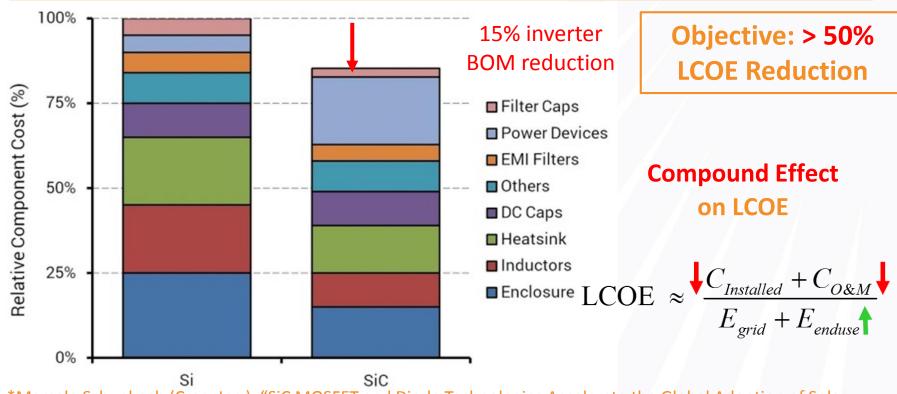
- ☐ Project Overview
 - —Impact to Solar Industry
 - —The way to 50% LCOE Reduction
- ☐ Technical Approach
- ☐ Project Plan

Project Targets

Comparison of New Concepts to State-of-the-Art (SOA)				
Category	Industry SOA	ry SOA Target		
LCOE	\$0.11/kWh	\$0.05/kWh		
System Cost	\$0.1/W	<\$0.06/W		
Peak Efficiency	98.7%	99%		
Power Density	0.15 kW/L (Si)	6 kW/L (SiC)		
Step-up Trans.	Yes	No 40x		
Agency Approvals	UL 1741	Extended UL1741 IEC 61850		
Thermal Management	Liquid/Forced Air	Natural Convection		
Maintenance Time	4-6 hours	30 min-1 hour		
Redundancy/	Limited and	Hot-Swap		
Expendability	Stationary	Economies of Scale		

More energy & **Less Heat**

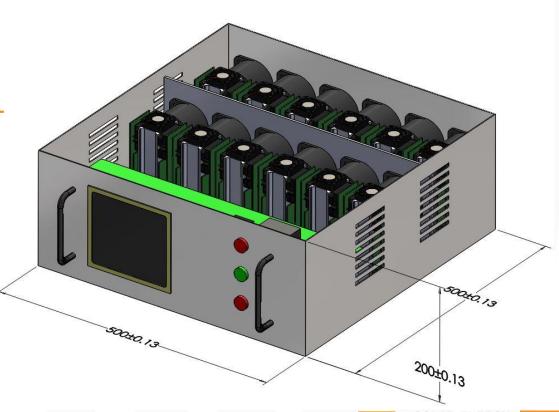
> **Easy Installation** & Logistics


> > Fast Approval Cybersecurity

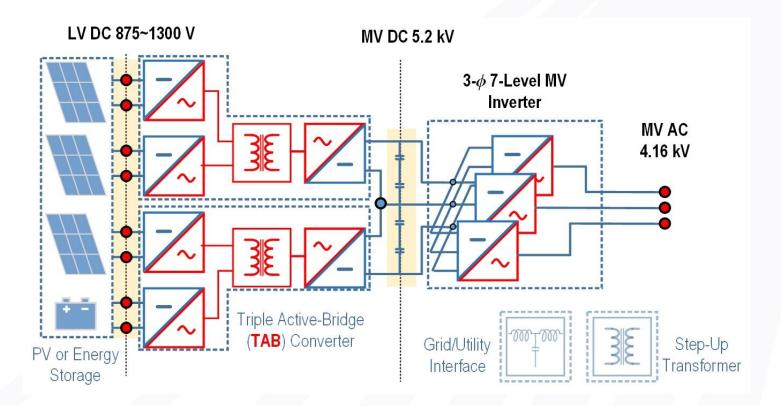
> > > Higher Reliability & Less Downtime

> > > > **Easy Maintenance** & Less Upgrade

The Holistic Inverter Design Approach



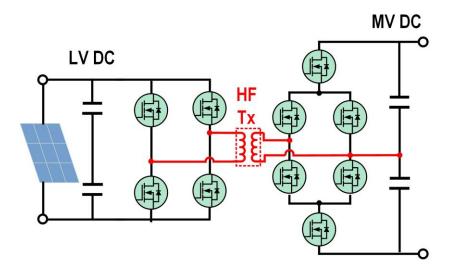
^{*}Marcelo Schupbach (Cree, Inc.), "SiC MOSFET and Diode Technologies Accelerate the Global Adoption of Solar Energy", Bodo's Power Systems, May 2015.


Technical Approach

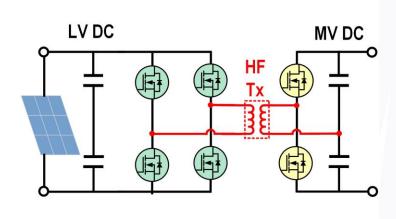
Solar Inverter System =

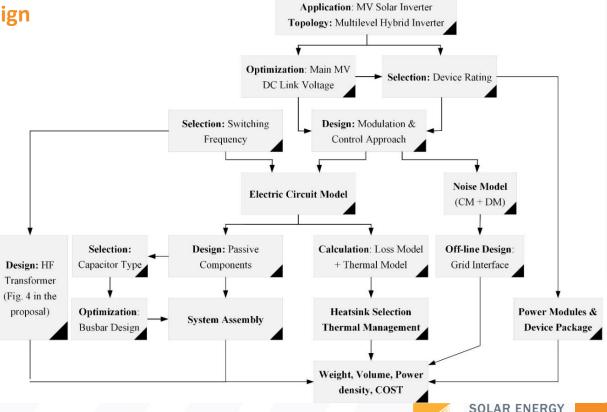
- (1) Power Electronics +
- (2) High Frequency Transformers +
- (3) Thermal Management System +
- (4) Grid Interface / Filters +
- (5) Control System
- Best-in-class SiC Modules
- Multi-Objective Optimization
 A Holistic Inverter System
 - Design Approach

300 kW MV Solar Inverter


Power Electronics Circuits

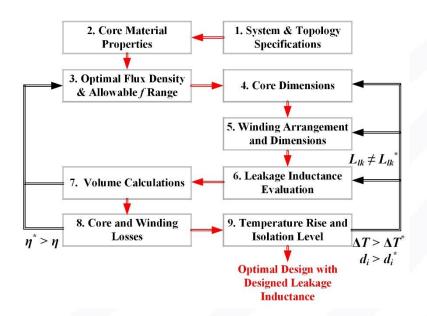
SiC MOSFETs: 1.7 kV 3.3 kV

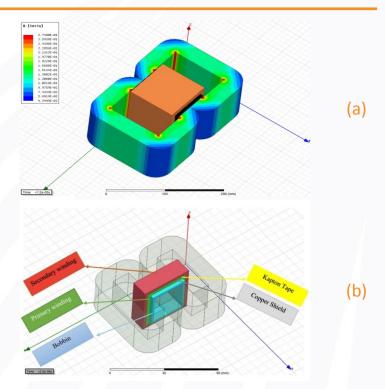



All 1.7 kV SiC MOSFETs

1.7 kV + 3.3 kV SiC MOSFETs

Multi-objective Optimization

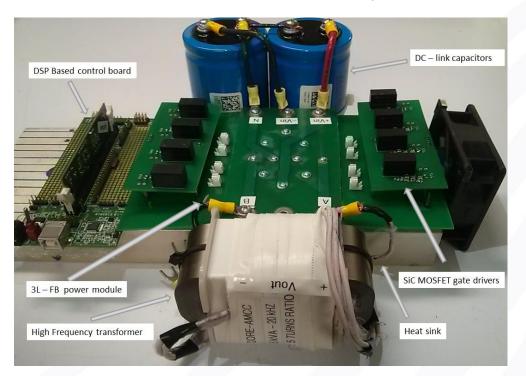

- A Holistic Solar Inverter Design
- Technology Readiness
- Economic Feasibility

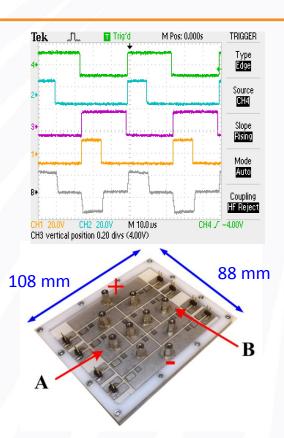


Device Type: SiC MOSFET

High Frequency Transformer

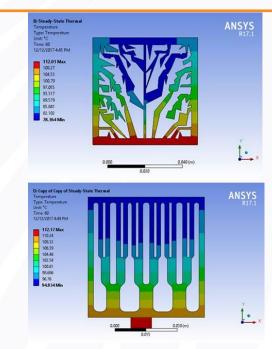
Transformer Design Flow Chart



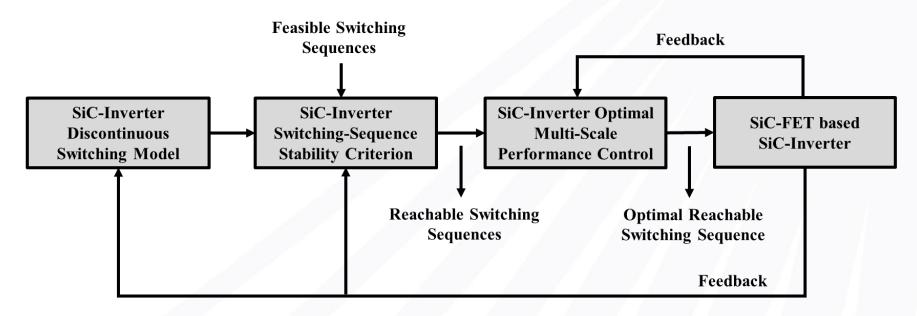

(a) The flux density fields and (b) shell-type structure of a nanocrystalline 72.8 kVA 20-kHz transformer.

High Frequency Transformer

"1.2 kV SiC MOSFET-Based 3L-FB" Experimental Results

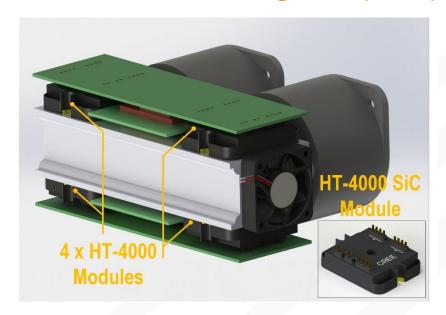

Ratings: ~20 kVA, 1.2 kVdc, Tj=150 °C

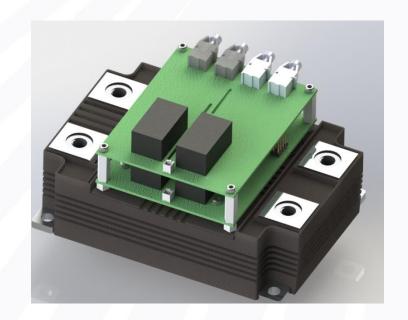
Power density: ~ 200 kVA/liter


Integrated Thermal & Reliability Approach

- Co-design of Electrical and Thermal with mechanical layout optimization for reliability/failure risk.
- Thermally optimized design to reduce operating temperature swings compared to SOA and typical lifetimes (20% ΔT reduction ≈ >1.5x life/MTTF).
- Considerations important in determining contributions of operating T_{avg} and ΔT and f on thermomechanical reliability.
- Evaluation of impact of usage and the associated cooling scheme(s)
- Thermal management control scheme coordinated with building cooling utilities

3D printed channeled heat sinks for optimizing air flow and conduction, which can be incorporated with directed airflow through manifold structure


Control for Energy Efficiency & Reliability

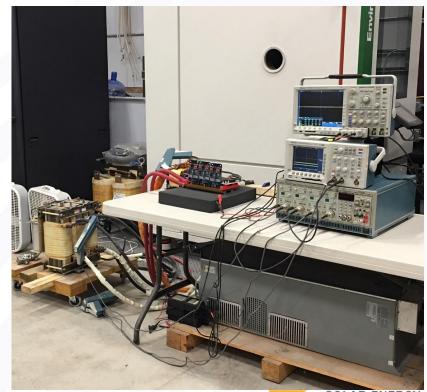

A novel switching sequence control (S²C)

Fast Inverter Assembly and Prototyping

Power Electronics Building Blocks (PEBBs)

A PEBB using Wolfspeed 1.7 kV HT-**4000 SiC Modules**

A Half-Bridge PEBB using Wolfspeed XHV-7 3.3 kV power module



Test and Evaluation

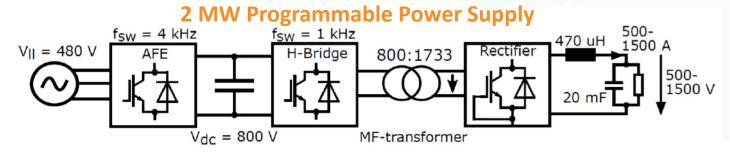
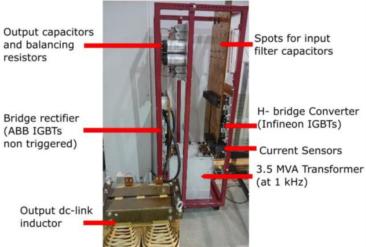

National Center for Reliable Electric Power Transmission (NCREPT) @ U of A

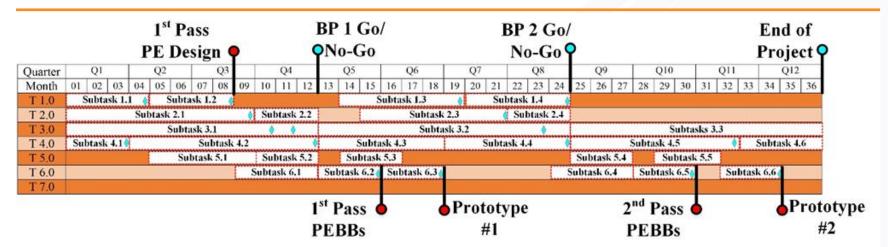
Table 2. Ratings of the NCREPT Test Facility			
Parameter	Rating		
Power	Up to 6 MVA		
Medium Voltages	13.8 kV or 4.16 kV (line-line) Variable		
	from 0 V to 15.18 kV		
Low Voltages	480 V (line-line), Variable 0-528 V		
Frequency	40 Hz to 70 Hz		
Currents	300 A @ 13.8 kV; 1000 A @ 4.16 kV;		
	2500 A @ 480 V		
Loads	Active loads fully programmable; Test		
	energy is recirculated		



Test and Evaluation

Target Metrics & Design Concepts

Requirements	Target Metric	Proposed Design Concepts	
System Cost	< \$ 0.06/W; > 50% LCOE reduction;	 300 kW commercial scale central inverter; MPP voltage 875 ~ 1300 V DC, max. 1500 V DC; Output voltage 4.16 kV AC. 	
Service Life & Equipment Reliability	> 25 years lifetime; < O&M costs;	 Thermally optimized design to reduce operating temper swings compared to SOA and typical lifetimes (20% Δ' reduction ≈ >1.5x life/MTTF) Modular design to reduce O&M costs to swap compone and direct cooling needs Design for maintenance: 30 min − 1 hour. Optimized SiC control for partial load performance 	
Optimized Constituent Technologies Design	Optimization of efficiency, power density, mass density, component topology & switching, magnetics, passives, environmental impact, thermal systems, and manufacturing.	 Power Density > 6 kW/l; Specific Power > 3 kW/kg; Cooling: air cooling or natural convection; Topology: modular 5-level inverter; Switching frequency 30~40 kHz; EMI filter volume < 5% of total volume. 	
Grid-Support Controls	Compliance with ANSI, IEEE, and NERC standards.	 EPRI, SIWG IEEE 1547.3 and IEC 61850. 	
Interoperable and Cyber Secure	Compliance with open interoperability standards and cybersecurity protocols.		


Technical Innovation & Impact

- Holistic solar/energy storage inverter design to enable significantly reduced lifetime costs
- Hierarchical 3-layer multi-objective optimization design
 - PEBBs; PE circuits; cabinet layout
- New PE topology + S²C Control to take advantage of SiC technology for volumetric and EMI reductions
- Novel integrated thermal management and reliability approaches coupled with electrical design.
- Scalable to other MV applications in various market segments.

Project Plan – Approach

- ☐ Two-pass prototype approach
- ☐ Analyze critical issues in the 1st pass
- ☐ Drive out limiting factors in the 2nd pass
- ☐ Test and evaluate each pass to inform reliability

Schedule

- Task 1.0: Power Electronic Circuit Design;
- Task 2.0: High Frequency Transformer Design;
- Task 3.0: Thermal Management & Reliability;
- Task 4.0: System Control Development;
- Task 5.0: Inverter Assembly & Prototyping;
- Task 6.0: Test and Evaluation;
- **Task 7.0:** Technology to Market (T2M).

Schedule

- Go/No-Go decision point 1 (@ 12th Mo): 1) finish the 1st pass inverter cabinet level design; 2) use theoretical analysis, numerical simulation, and HIL simulation to validate the proposed design can meet the goal, i.e., 300 kW output power, 99% peak efficiency, 6 kW/L power density; 3) finish the initial economic analysis to show the cost of 1st pass design can achieve less than \$ 0.08/W.
- Go/No-Go decision point 2 (@ 24th Mo): 1) deliver the 1st prototype that meet the goal specified in Go/No-Go decision point 1; 2) deliver comprehensive testing report for 1st prototype; 3) finish the 2nd pass PEBB level design; and 4) present the plan and economic analysis to achieve less than \$ 0.06/W.
- End of the project goal is to deliver: 1) 2nd prototype meeting the project targets; 2) prototypes of the PEBBs with various topologies, including half-bridge, DAB, ANPC; 3) a multi-objective optimization tool for electro-thermal co-design of WBG power electronic system; and 4) technical reports.

Thank you! Comments & Questions?

