Panel : Value Proposition for Big Data Analytics

Topic Overview: Mladen Kezunovic, Coordinator/Moderator Texas A&M University March 13, 2019

Panel : Value Proposition for Big Data Analytics

- Chair, Introduction and overview: Mladen Kezunovic, Director, Smart Grid Center, Texas A&M University
- Utility Use Cases: Doug Dorr, Program Manager, EPRI
- *Future and visualization*: Mark Johnson, Managing Director, Utility Analytics Institute
- Vendors' perspective: Mahesh Sudhakaran, Chief Digital Officer, IBM Energy and Utility business
- **Regulatory ,Legal Issues & Consumer Advocate views**: Chris Ayers (substitute for David Colata)

Outline

Expectations Big Data vs. Big Data Analytics Big Data Properties Data Science Big Data Processing Infrastructure Example: Predicting outages Panel Introduction:

- Panelist
- Questions

Expectations

Data Science& Processing Infrastructure

T&D Outage Prediction

Example: Big Data Analytics

Example: outages

Annual Business Losses from Grid Problems

Cost

The real victim of power outages are businesses in general

US\$'000 (2010); average cost of one hour power interruption in the US per type of customer

Estimated Costs of Weather-Related Power Outages

Source: CEA estimates using data from Census Bureau, Department of Energy , Energy I nformation Administration, Sullivan et al 2009.

Impact

M. Kezunovic, Z. Obradovic, T. Dokic, B. Zhang, J. Stojanovic, P. Dehghanian, and P. -C. Chen, "Predicating Spatiotemporal Impacts of Weather on Power Systems using Big Data Science," Springer Verlag, Data Science and Big Data: An Environment of Computational Intelligence, Pedrycz, Witold, Chen, Shyi-Ming (Eds.), ISBN 978-3-319-53474-9, 2017.

BD for Risk Assessment

BD Data Properties

			VELOCITY	VOLUME		
	Source	Data Type	Temporal Resolution	Spatial Resolution	Measurements	
	Automated Surface Observing System	Land-Based	1 min	900 stations	Air Temperature, Dew Point, Relative Humidity, Wind Direction, Speed and Gust, Altimeter, Sea Level Pressure, Precipitation, Visibility	
ľ	Level-2 Next Generation Weather Radar	Radar Data	5 min	160 high-resolution Doppler radar sites	Precipitation and Atmospheric Movement	
A	NOAA Satellite Database	Satellite Data	Hourly, daily, monthly	4 km	cloud coverage, hydrological observations (precipitation, cloud liquid water, total precipitable water, snow cover), pollution monitoring	
R	Vaisala U.S. National Lightning Detection Network	Lightning Data	Instantaneous Median Location Accuracy 200-500m Date and Time, Latitude and Longitude, Peak amplitude, P event: Cloud or Cloud to Ground		Date and Time, Latitude and Longitude, Peak amplitude, Polarity, Type of event: Cloud or Cloud to Ground	
	National Digital Forecast Database	Weather Forecast Data	3 hours	5 km	Wind Speed, Direction, and Gust, Relative Humidity, Convective Hazard Outlook, Tornado Probability, Probability of Thunderstorms	
I	Texas Parks & Wildlife Department	Texas Ecological Mapping Systems Data	static	10 m	Distribution of different tree spices	
E	Texas Natural Resources Information System	NAIP	year	50 cm – 1 m	High Resolution Imagery	
т	National Aeronautics and Space Administration	3D Global Vegetation Map	static	1 km	Canopy height data	
	National Cooperative Soil Survey	gSSURGO	static	10 m	Soil type	
Y		Historical Outage Data	instantaneous	Feeder section	Location, start and end time and date, number of customers affected, cause code	
		Tree Trimming Data	day	Feeder	Feeder location, date, trimming period, number of customers affected, cost of trimming	
		Network GIS data	static	Infinity (shapefile)	Poles: location, material/class, height Feeders: location; conductor size, count, and material; nominal voltage	
	Utility	Historical Maintenance Data	day	Tower location	Start and end date and time, location, type (maintenance, replacement), cost, number of customers affected	
	Insulator asset data		static	Infinity (shapefile)	Surge Impedances of Towers and Ground Wires, Footing Resistance, Component BIL	
		In-field measurements	instantaneous	Tower location	Leakage Current Magnitude, Flashover Voltage, Electric Field Distribution, Corona Discharge Detection, Infrared Reflection Thermography, Visual Inspection Reports	

	Data Class	Data Source (Measurements)	VOLUME (Data file size)	VELOCITY (Rate of use)	VERACITY (Accuracy)
v		SM	120GB per day/ device	Every 5-15 min	error <2.5%
	Utility measurements	PMU	30GB per day/device	240 samples/sec	error <1%
A		ICM	5GB per day/device	250 samples/sec	error <1%
		DFR	10MB per fault/device	1600 samples/sec	error <0.2%
R		Radar [27]	612 MB/day per radar	Every 4-10 min	1-2 dB; m s-1
		Satellite [28]	At least 10 GB per day	Every 1-15 min	VIS<2%; IR<1-2K
I	Weather data	ASOS [29]	10 MB/day per station	Every 1 min	T-1.8°F, P<1%, Wind speed - 5%, RR - 4%
E		NLDN [30]	40 MB/day	During lightning	SE < 200m, PCE <15%
		NDFD [31]	5-10 GB/day per model	1 - 12 hours	Varies by parameter
т		TPWD EMST [32]	2.7 GB for Texas	static	SE < 10 m
	Vegetation and	TNRIS [33]	300 GB for Texas	static	SE < 1 m
Y	ropography	LIDAR [34]	7 GB for Harris Co.	static	HE < 1m, VE < 150 cm

BD Analytics Outcomes

Probabilities of outages for no outage

Probabilities of outages for vegetation

Probabilities of outages for lightning

Probabilities of outages for ice

Takeaways

- Extensive research is needed to bring BD Analytics into utility practice:
 - Data analytics has been used in the power system domain for over 50 years, but Big Data Analytics is in its infancy
 - The Big Data Applications require intensive and costly effort to prepare the data (ingestion, cleansing, curation)
 - The gap between the Big Data platforms and utility legacy software (EMS, DMS, MMS) uses is huge, and costly
 - Utility predictive methods do not explore data sciences advances (Deep learning, spatiotemporal scaling, etc.)
- The government contribution may be in the following areas:
 - Make government sources of data readily useable
 - Fund research in new applications of Big Data Analytics
 - Help industry demonstrate the new business opportunities
 - Explore benefits of predictive methods in solving grand challenges

Panel : Value Proposition for Big Data Analytics

- Chair, Introduction and overview: Mladen Kezunovic, Director, Smart Grid Center, Texas A&M University
- Utility Use Cases: Doug Dorr, Program Manager, EPRI
- *Future and visualization*: Mark Johnson, Managing Director, Utility Analytics Institute
- Vendors' perspective: Mahesh Sudhakaran, Chief Digital Officer, IBM Energy and Utility business
- **Regulatory ,Legal Issues & Consumer Advocate views**: Chris Ayers (substitute for David Colata)

Panel Questions

Use Cases: What is the state of the art in Big Data Analytics products and R&D developments suitable for power industry applications?

Barriers and gaps: What prevents faster development and deployment of the solutions that utilize Big Data Analytics? Is there a compelling business case (value) for the stakeholders (utilities, ISO's, Load Serving Entities, third party aggregators, data providers) to adopt Big-Data Analytics? What is this business case?

Customer role and needs: How to access data related to energy consumption that resides at the customer site or is collected at the points of customers interfacing to the grid? How to distribute data and knowledge to end-use customers in a manner that facilitates decisions?

Regulatory and legislative framework: How does such framework shape crucial issues in data access such as cybersecurity, privacy, data ownership, critical infrastructure confidentiality, data as service?

