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Panel : Value Proposition for Big Data Analytics

e Chair, Introduction and overview: Mladen Kezunovic, Director,
Smart Grid Center, Texas A&M University

e Utility Use Cases: Doug Dorr, Program Manager, EPRI

e Future and visualization: Mark Johnson, Managing Director,
Utility Analytics Institute

e Vendors’ perspective: Mahesh Sudhakaran, Chief Digital Officer,
IBM Energy and Utility business

e Regulatory ,Legal Issues & Consumer Advocate views: Chris
Ayers (substitute for David Colata)

SMART GRID CENTER

TEXAS A&M ENGINEERING EXPERIMENT STATION

A2, U.S. DEPARTMENT OF EAC ﬁ
:‘ '. - ‘““""““"’“"‘“’ B
E N ERG 0N 5



Outline

Expectations
Big Data vs. Big Data Analytics
Big Data Properties
Data Science
Big Data Processing Infrastructure
Example: Predicting outages
Panel Introduction:

- Panelist

- Questions
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Big Data Properties
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Data Science& Processing Infrastructure

Languages

Development Tools

Q) Visual Studio|

»q visua
s —
% upyter
gl o’

e
—

: BIG ok DATA
SICDIQIIEE @‘ DATA 7.@ ANALYTICS

Data Ingestion
Tools

Data Exploration

e MXNet ay,, /)  andVisualization
XGBoost

TextMining
{NLP

I, U.S. DEPARTMENT OF

)JENERGY

SMART GRID CENTER

5 TEXAS A&M ENGINEERING EXPERIMENT STATION




T&D Outage Prediction

Example:
Big Data Analytics
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Example: outages

Major causes of power outages in the U.S.
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Equipment —
failure

Unknown/ —
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Annual Business Losses from Grid Problems

Primen Study: $1508 annually for power outages and quality issues
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Cost

The real victim of power outages are businesses in general

US$'000 (2010); average cost of one hour power interruption in the US Estimated Costs of Weather-Related Power Outages

per type of customer Billions of 2012 $
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Source: US Department of Energy.
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Impact

International Electricity Grid Reliability
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Source: The Brattle Group, Galvin Power Institute, Council of European Energy Regulators,
China Souther Power Grid
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Predictive Data Analytics
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M. Kezunovic, Z. Obradovic, T. Dokic, B. Zhang, J. Stojanovic, P. Dehghanian, and P. -C. Chen, "Predicating Spatiotemporal Impacts of Weather on Power Systems
using Big Data Science," Springer Verlag, Data Science and Big Data: An Environment of Computational Intelligence, Pedrycz, Witold, Chen, Shyi-Ming (Eds.), ISBN

978-3-319-53474-9, 2017.
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BD for Risk Assessment
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BD Data Aggregation
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BD Data Properties

Inspection Reports

U.S. DEPARTMENT OF

ENERGY

VELOCITY VOLUME
Source Data Type Temporal Resoluti Spatial Resoluti Measurements
Automated Surface Land-Based 1 min GO0 stations Air Temperature, Dew Point, Relative Humidity, Wind Direction, Speed
Observing System and Gust, Altimeter, Sea Level Pressure, Precipitation, Visib - - — —
Data Class Data Source VOLUME VELOCITY VERACITY
R - — ) 1 t - : A deval ) 1 ata
lml‘-‘g -\‘J:At gu:‘ualwn Radar Data 5 min gOhllgh-n::lul}‘cu Prec and Atmospheric N (Measurements) (Data file size) (Rate of use) (Accuracy)
cather hadar oppler radar sies N
- . - - - — — v SM 120GB per day/ device Every 5-15 min emor <1.5%
NOAA Satellite Satellite Data  |Hourly, daily, monthly 4 km cloud coverage, hydrological observations (precipitation, cloud liquid
Database water. total precipitable water, snow cover...). pollution moni il PMU 30GE per day/device 240 samples/see error <1%
WVaisala 17.5. National | Ligt g Data I Median Location | Date and Time, Latitude and Longitude, Peak amplitude, Polarity, Type of Uity
Lightning Detection Accuracy 200-500m event: Cloud or Cloud to Ground A | measurements ICM SGB per day/device 250 samples/sec emor <1%
Network
National Digital Weather Forecast 3 hours 5km Wind Speed, Direction, and Gust, Relative Hummidity, Convective Hazard DFR 10MB per fault/device 1600 samples/sec emor <0.2%
Forecast Databasa Data Outlook, Tornado Probability, Probability of Thunderstorms...
— . . S— . . R Radar [27] 612 MB/day per radar Every 4-10 min 2dB;mst
Texas Parks & Wildlife | Texas Ecological static 10m Distribution of different tree spices
Department Mapping Systems N X . ) . X VI5-<2%;
Data Satellite [28] At least 10 GB per day Every 1-15 min Re12K
Texas Natural Resources) NALIP vear S0ecm—1m High Resolution Imagery 1
Information System Weather data | 508 [20] 10 MB/day per station T-1L8°F, P<1%, Wind
— - - - speed - 5%, RR - 4%
National Aeronautics 3D Global static 1 km Canopy height data
A d""d :c":"c: Vegetation Map E NLDN [30] 10 MB/day During lightning SE < 200m, PCE <15%
ministration
'\J““Ué];l,i?ﬂ:;"m $SURA0 o 1om Soil type NDFD [31] 5-10 GBday permodel | 1-12 hours Varies by parameter
Historical Outage instantaneous Feeder section | Location, start and end time and dmi:dmlm'her of customers affected, cause T VD EMST [32] [2.7 GB for Texas statie §E<10m
Drata code
Tree Trimming day Feeder Feeder location, date, tnimming period, number of customers affected, cost Vegetation and 300 GB for Texas statie SE<1lm
Data of rimming Topography
Network GIS data static Infinity (shapefile) Poles: location, material/class, height v LIDAR [34] 7 GB for Hammis Co. static HE < Im,
Feeders: location: conductor size, count, and material: nominal voltage R o : VE < 150 em
Utility Historical day Tower location Start and end date and time, location, type (maintenance, replacement),
Maintenance Data cost, number of customers affected
lInsulator asset data static Infinity (shapefile) Surge Impedances of Towers and Ground Wires, Footing Resistance,
Component BIL
In-field instantangous Tower location  [Leakage Current Magnimude, Flashover Voltage, Electric Fizld Distribution
measurements Corona Discharge Detection, Infrared Reflection Thermography, Visual
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BD Analytics Outcomes
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Takeaways

e Extensive research is needed to bring BD Analytics into utility practice:
- Data analytics has been used in the power system domain for over 50 years, but Big Data Analytics is in its infancy
- The Big Data Applications require intensive and costly effort to prepare the data (ingestion, cleansing, curation)
- The gap between the Big Data platforms and utility legacy software (EMS, DMS, MMS) uses is huge, and costly
- Utility predictive methods do not explore data sciences advances (Deep learning, spatiotemporal scaling, etc.)
*  The government contribution may be in the following areas:
- Make government sources of data readily useable
- Fund research in new applications of Big Data Analytics
- Help industry demonstrate the new business opportunities

- Explore benefits of predictive methods in solving grand challenges
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Panel Questions

Use Cases: What is the state of the art in Big Data AnaIXtics products and R&D
developments suitable for power industry applications:

Barriers and gaps: What prevents faster development and de|:t))onment of the
solutions that utilize Big Data Analytics? Is there a compelling business case (value)
for the stakeholders (utilities, ISO’s, Load Serving Entities, third party a%gregators,
data providers) to adopt Big-Data Analytics? What is this business case-

Customer role and needs: How to access data related to energy consumption that
resides at the customer site or is collected at the points of customers interfacing to
the grid? How to distribute data and knowledge to end-use customers in a manner

that facilitates decisions?

Regulatory and legislative framework: How does such framework shape crucial
issues in data access such as cybersecurity, privacy, data ownership, critical
infrastructure confidentiality, data as service?
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