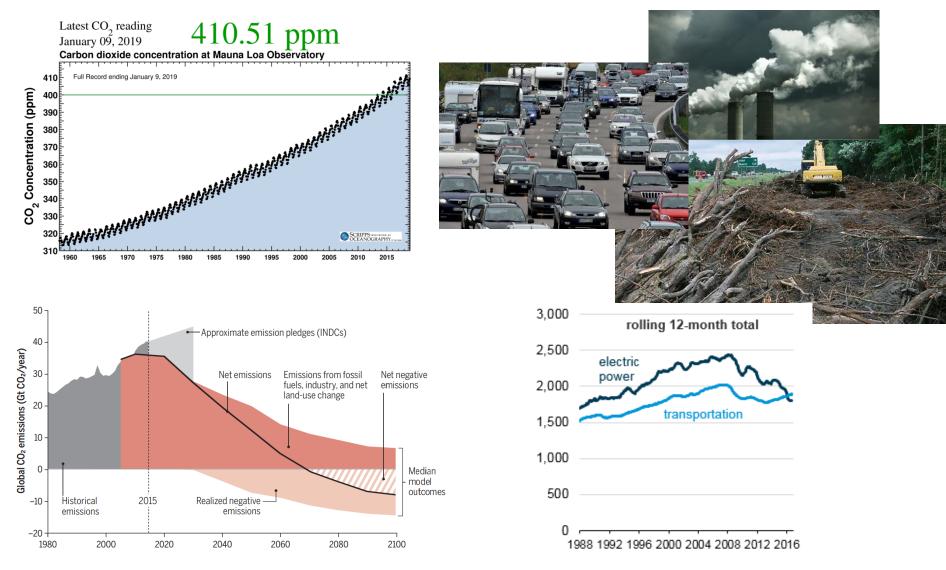
Waste Carbon Utilization and Carbon Management

BETO Peer Review 6 March 2019


lan Rowe

Technology Manager Bioenergy Technologies Office U.S. Department of Energy

Energy Efficiency & Renewable Energy

The need for better carbon management

Energy Efficiency & Renewable Energy

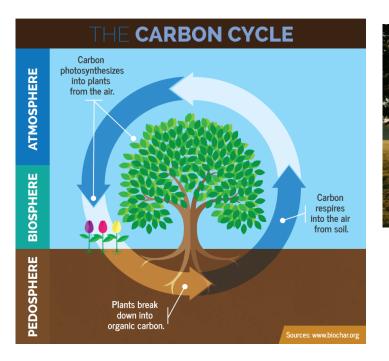
Can electrification remove the need for carbon?

- A 1-hour flight on a 747-400 uses ~3600 gal (11,000 kg) of jet fuel, which contains approximately 452,000 MJ of energy.
- Tesla Model S battery = ~.75 MJ/kg
- Weight of 747-400: 184,000 kg
- You'd need over 600,000 kg of battery for a 1hour flight (over 3X the weight of plane)

Region	Stocks billion cubic feet (Bcf)			
	02/22/19	02/15/19	net change	implied flow
East	354	395	-41	-41
Midwest	385	436	-51	-51
Mountain	79	87	-8	-8
Pacific	122	138	-16	-16
South Central	598	649	-51	-51
Salt	199	224	-25	-25
Nonsalt	399	425	26	-26
Total	1,539	1,705	-166	-166

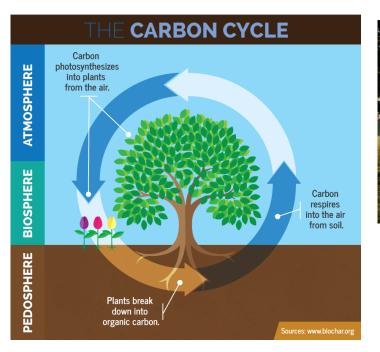
Working gas in underground storage, Lower 48 states

- From 2/15 thru 2/22, the US used 166 Bcf of natural gas from underground storage sites.
- Using the Δ_c H for CH₄, that's 178 billion MJ
- 1 Tesla Model S battery = 85 kWh = 306 MJ
- Over 580 million Tesla Model S batteries would be needed to meet this cold-snap demand, assuming they could hold the charge for 6+ months


The Carbon Based Economy

A more sustainable economy is not a *low-carbon economy* as much as it will be a *renewable carbon based economy*.

Obtaining and managing renewable carbon



Wet waste: 77M ton/yr

Obtaining and managing renewable carbon

Wet waste: 77M ton/yr

Plastics: 35M ton/yr <10% recycle rate

Waste CO₂: 5G ton/yr

Trends in CO₂ management

ADM starts up Illinois CCS project, will capture over five million tonnes of CO2

5,903 views | Feb 15, 2018, 08:30am

Tax Credit May Rev Up Carbon Capture And Sequestration Technology

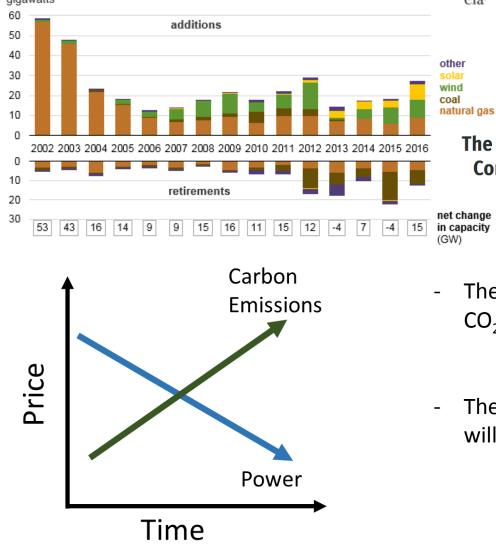
Barrasso: USE IT Act is Important Bipartisan Legislation to Promote Carbon Capture Research and Development

April 11, 2018

By Rhea Healy | 10 April 2017

CLIMATE

Jerry Brown Orders California to Go Carbon Neutral by 2045. Is That Even Possible? The New York Times


Scientists Push for a Crash Program to Scrub Carbon From the Air

A new paradigm for carbon emissions

eia

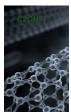
U.S. utility-scale electric capacity additions and retirements (2002-16) gigawatts

The World's Fifth-Largest Economy, California, Just Committed to 100% Carbon-Free Power by 2045

- The price (direct or indirect) of emitting
 CO₂ will go up
- The price of and C-intensity of electricity will decrease

CO₂ utilization efforts

THE CARBON OPPORTUNITY


\$20 MILLION

The \$20 million NRG COSIA Carbon XPRIZE is a global competition to develop breakthrough technologies that will convert CO₂ emissions from power plants and industrial facilities into valuable products like building materials, alternative fuels and other items that we use every day.

ELECTROFUELS: utilizing renewable electricity to make biofuels

- Funding: \$50M from 6/2010 thru 12/2014
- Non-photosynthetic microbes convert CO₂ to fuel while using electricity for energy

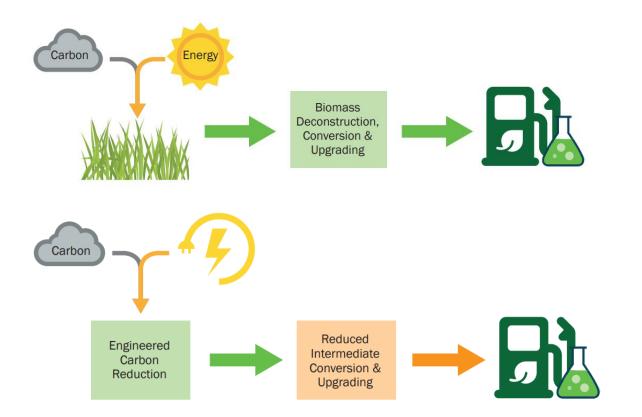
CARBICRETE

- Fund \$10-15M per year on CO₂ utilization
- Focuses on algae and catalysis

ENERGY Energy Efficiency & Renewable Energy BIOENERGY TECHNOLOGIES OFFICE

- \$30M algae program

Enabling a Circular Carbon Economy


A future economy that serves as a tool to manage carbon circularly. Develop technologies to manage carbon throughout its lifecycle, from atmospheric CO_2 through organic products and back to CO_2 . Crosscutting technologies in the land, agricultural, and energy sectors

Three R&D focuses:

- Rewiring Carbon Utilization
- Re-engineering Biomass Conversion
- Enabling Advanced Carbon
 Management

Enabling Studies:

Non-biological CO₂ activation

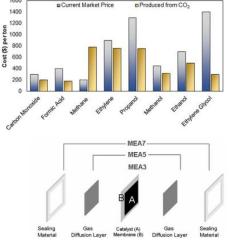
- Feasibility Study of Utilizing Electricity to Produce Intermediates from CO₂

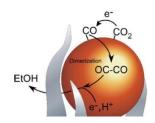
- CO₂ Utilization: Thermo- and Electro-catalytic routes to fuels and chemicals

Electrocatalysis and thermocatalysis R&D:

- Electrocatalytic upgrading of CO_2 to fuels and C2+ chemicals

Carbon


Reduction


- Catalyst Development for Selective Electrochemical Reduction of CO₂ to High-value Chemical Precursors w/Opus-12

SBIR Phase II - Utilization of Waste CO₂ to Make Renewable Chemicals and Fuels

SBIR Phase I - Excess Electric Power-Driven Conversion of CO₂ to Chemicals

SBIR Phase II - *Renewables-Driven Production of Organic Acids from Industrial CO*₂ Waste Streams

ορυ**s** 12

Biological upgrading of intermediates derived from CO₂

Engineering microorganisms to upgrade formate/methanol

- Improving formate upgrading by Cupriavidus necator
- Enhancing Acetogen Formate Utilization to Value-Added Products
- Synthetic C1 Condensation Cycle for Formate-Mediated ElectroSynthesis

CO2 Carbon dioxide CO2 Carbon dioxide CO2 Carbon dioxide CO2 Carbon Correction Co2 Carbon Co2 Carbon Co2 Carbon Co2 Carbon Co2 Carbon Co2 Carbon Carbon Co2 Carbon Carbon Co2 Carbon Carbon Carbon Co2 Carbon Carbo

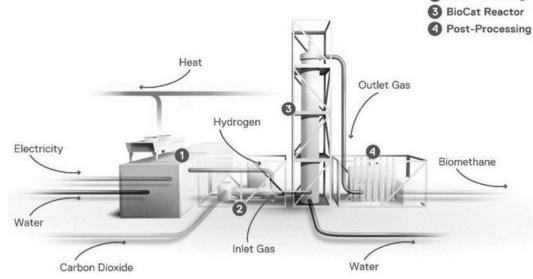
CO₂PERATE

- **BEEPS FOA:** Integrating Chemical Catalysis and Biological Conversion of Carbon Intermediates for Converting CO₂– Johns Hopkins University **BEEPS FOA:** Electrocatalytic conversion of CO₂ to formic acid via microstructured materials –

- **BEEPS FOA:** Electrocatalytic conversion of CO₂ to formic acid via microstructured materials – Montana State University

Engineering of microorganisms to upgrade carbon monoxide

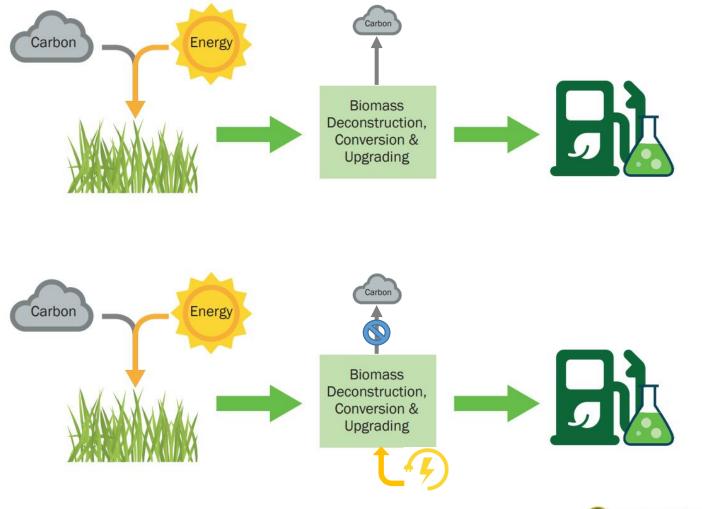
- Agile Biofoundry : Progress towards a new model chemolithoautotrophic host
- Agile Biofoundry: Data Integration and Deep Learning for Continuous Gas Fermentation Process Optimization
- BRDi: Engineered reversal of the 6-oxidation cycle in clostridia for the synthesis of fuels and chemicals
- BEEPS FOA: Production of bioproducts from electrochemically-generated C1 intermediates Lanzatech
- SBIR Award: Electrochemical conversion of CO₂ to CO for use as a fermentation feedstock


- Integration of Flue Gas CO₂ Electrolysis with Microbial Syngas Fermentation

CO₂ conversion for grid-scale energy storage:

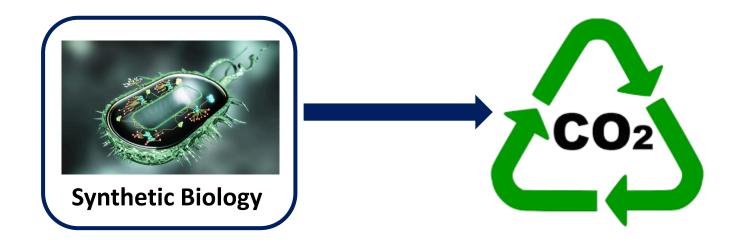
- Biomethanation of CO₂ to Pipeline Grade Methane
- Modular Microbial Electromethanogenesis Flow Reactor for Biogas Upgrading

DOE and SoCalGas funding LLNL and Stanford in new power-to-gas research: microbial electromethanogenesis


02 August 2018

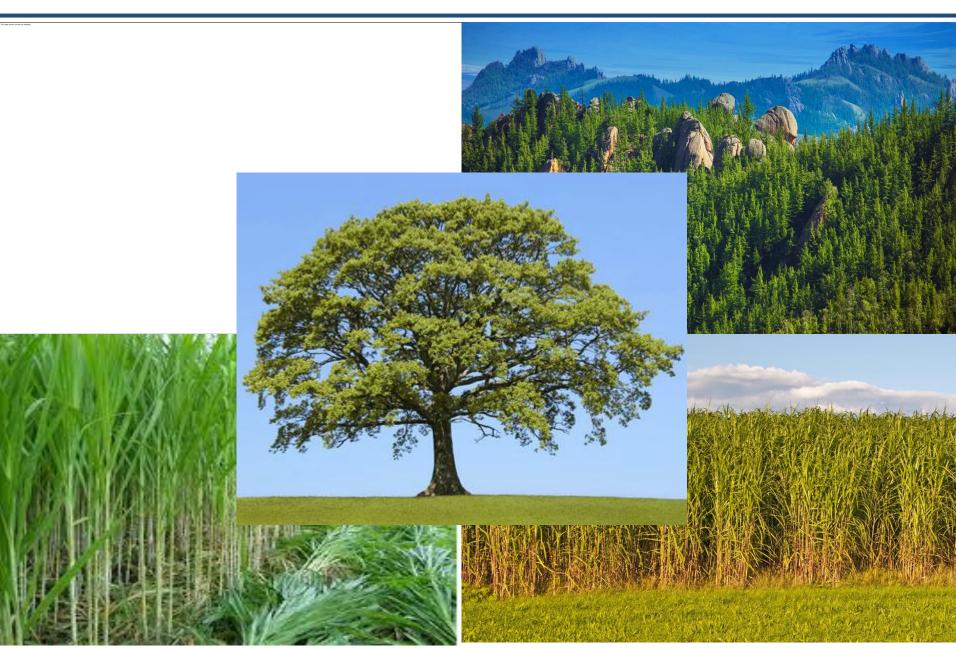
Electrolyzer

2 Pre-Processing

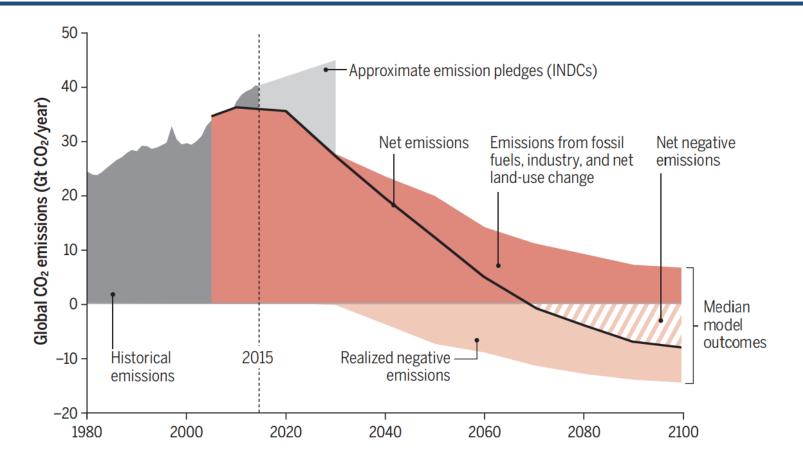

Re-engineering biomass conversion

Re-Engineering biomass conversion: strategies

Whole-cell pathway engineering for optimized carbon utilization (e.g. NOG)


Engineered mixed microbial systems – the carboxylate platform (one example)

$$C_{6}H_{12}O_{6} \rightarrow 2 H_{3}CCO_{2}H + 2 CO_{2} + 2 H_{2} \qquad \text{Acidogens} \\ 2 CO_{2} + 2 H_{2} \rightarrow H_{3}CCO_{2}H \qquad \text{Acetogens} \\ \hline C_{6}H_{12}O_{6} \rightarrow 3 H_{3}CCO_{2}H \qquad \text{Net} \end{cases}$$


Another opportunity for alternative platform development

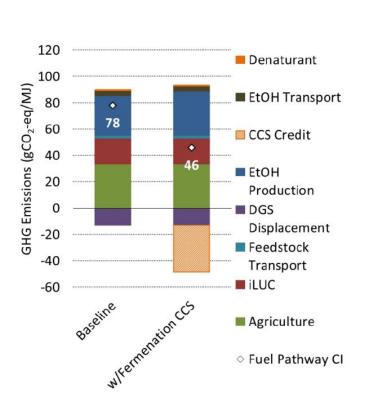
Enabling Advanced Carbon Management

Necessary targets rely on huge negative emissions

Integrated Assessment Models for hitting the IPCC target call for an incredible increase in carbon negative pathways

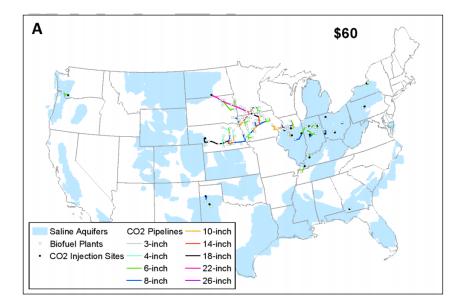
Carbon management as a bioproduct

Tax Credit May Rev Up Carbon Capture And Sequestration Technology California's Clean Fuels Standard Poised to Get Even Better


United Airlines Plans 50% Emissions Reduction by 2050 CLIMATE Jerry Brown Orders California to Go Carbon Neutral by 2045. Is That Even Possible?

All Lyft Rides Are Now Carbon Neutral

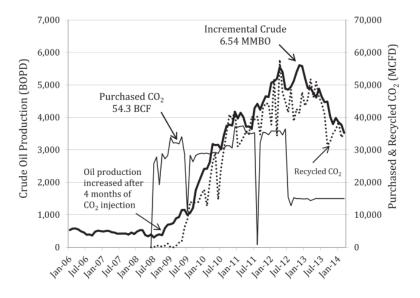
As Lyft becomes one of the world's largest voluntary purchasers of carbon offsets, every ride will now contribute to fighting climate change.


Profit at existing biorefineries

CCS can enable an improved Carbon Intensity at biorefineries

Near-term deployment of carbon capture and sequestration from biorefineries in the United States

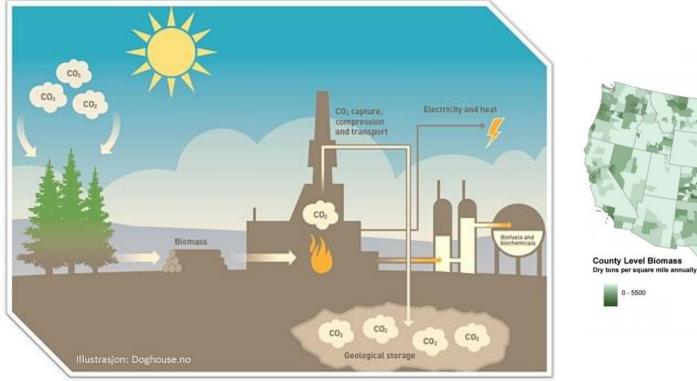
Daniel L Sanchez¹, Nils Johnson², Sean McCoy³, Peter Turner¹, Katharine Mach⁴

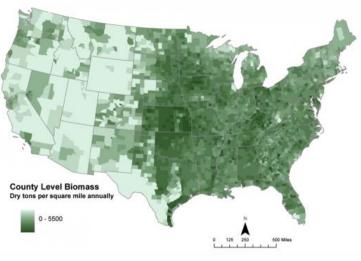

Based on the economics of CCS and current EtOH plants, the current 45Q tax credit of \$50/ton CO₂ incentivizes potentially ~30 Mton/yr sequestration at existing biorefineries

CCS as a tool for new low carbon pathways

Carbon negative oil: A pathway for CO₂ emission reduction goals

Katherine Y. Hornafius^{a,*}, J. Scott Hornafius^{b,c}


CO₂ injection increases oil well production


In the case of the Booker project, the forecast oil recovery is 1.1 million barrels from 11.5 billion cubic feet of CO_2 (Chaparral, 2013b), resulting in a cumulative CO_2 utilization efficiency (ϵ) of about 10.5 Mscf/barrel and a net sequestration ratio (S) of about 1.3, meaning 30% more CO_2 is injected into the subsurface reservoir than the amount of CO_2 that is released into the atmosphere when the produced oil is burned. The resulting oil is carbon negative.

- By using biogenic CO₂, carbon-negative petroleum can be extracted
- Burying 30% more CO₂ through EOR than carbon emitted when the petroleum is burned

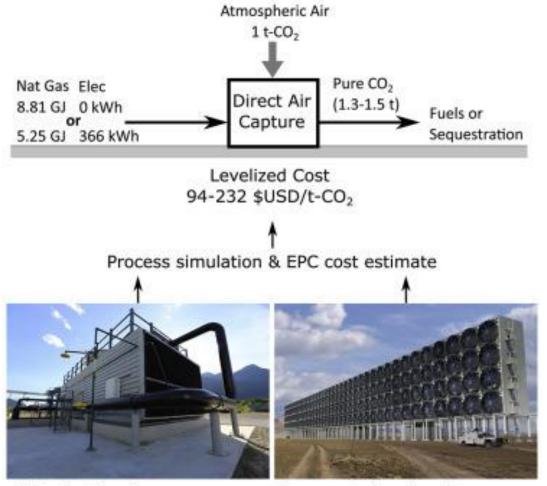
Bioenergy carbon capture and storage (BECCS)

BECCS

Energy Efficiency & Renewable Energy

Carbon storage in products and buildings

Bioplastics and chemicals


Engineered wood to displace steel and concrete

Biochar

Direct Air Capture

Pilot plant performance data

Commercial scale reference design

The New Carbon Economy

3.) Valorize carbon

Mechanisms to convert emissions to

negative emissions and CO₂U throughout

the economy

1.) Decarbonize

Drive efficiency improvements and renewable transition throughout all sectors to maximize carbon utilization and minimize carbon emissions

2.) Go Negative

Establish and rapidly expand carbon removal (carbon negative) capacity

Contact us

Ian Rowe

Technology Manager | Bioenergy Technologies Office U.S. Department of Energy o. 202-586-7720 | <u>lan.Rowe@ee.doe.gov</u>

