

2019 PROJECT JEW

U.S. DEPARTMENT OF ENERGY BIOENERGY TECHNOLOGIES OFFICE

Advanced Development & Optimization (ADO) Program Overview March 4, 2019

Jim Spaeth

Program Manager Advanced Development & Optimization

Advanced Development & Optimization Agenda

- Goals
- History
- Focus
- Recent FOAs
- Co-Optima
- The Team
- Peer Reviewers

Goals and Milestones

Energy Efficiency & Renewable Energy

Strategic Goal:

- Develop and test bioenergy production technologies through verified proof of performance in engineering-scale systems and relevant environments
- Research ways to enhance scaling and integrate bioenergy production processes
- Identify innovative end uses Co-Optima

Systems Research and Development to Enable a Robust Bioenergy

By 2022, verify integrated systems research at engineering-scale for hydrocarbon biofuel technologies at mature modeled MFSP of \$3.00/GGE with a minimum 50% reduction in emissions relative to petroleum-derived fuels.

By 2030, verify integrated systems research at engineering-scale for hydrocarbon biofuel technologies at mature modeled MFSP of \$2.50/GGE with a minimum 50% reduction in emissions relative to petroleum-derived fuels, using economically advantaged feedstocks to produce renewable fuels and bioproducts.

Energy Efficiency & Renewable Energy

Evolution of Program Structure and Focus

Demonstration & Deployment 2009-2013 Demonstration & Market Transformation 2014-2017 Advanced Development & Optimization 2017 →

Energy Efficiency & Renewable Energy

ADO Program FOA History

Renewable Energy

Prior Focus on Pilot, Demonstration and Pioneer Scales

Energy Efficiency & Renewable Energy

Distribution of Projects Supported since 2006

BETO has supported since 2006, a total of 42 pilot, demonstration and pioneerscale facilities

• In 2016 selected six new projects

BETO investments have allowed industry partners to:

- Enable the development of firstof-a-kind IBRs
- Prove conversion technologies at scale
- Validate techno-economic assessments, and
- Gain investor confidence

Open circle designates a recent PD2B3 FOA selection

ADO Focus and Approach

Energy Efficiency & Renewable Energy

Moving to Earlier TRL Focus

DOE Technology Readiness Levels

- TRL indicates the maturity level of a given technology or component
- TRL is **not an indication** of the quality of technology implementation in the design, integration readiness or system success

Tech Development Level	TRL	Definition
Systems Operations	9	Actual system operated over full range of expected mission conditions
Sustana Commissioning	8	Actual system completed and qualified through test and demonstration
System Commissioning	7	Full-scale, similar system demonstrated in relevant environment
Technology Demonstration	6	Engineering / pilot scale, similar system validation in relevant environment
Technology	5	Laboratory scale, similar system validation in relevant environment.
Development	4	Component and/or system validation in laboratory environment.
Research to Prove	3	Analytical and experimental critical function and/or characteristic proof of concept
Basic Technology	2	Technology concept and/or application formulated
Research	1	Basic principles observed and reported

Scaling – NREL Fermentation Example

<image/> <image/> <image/> <image/> <image/>				
	Lab/	Bench	Pilot	Demonstration
Reactor Volume	0.1 L Shake flask	1 – 10 L Batch reactor	♦ 1000 - 10,000 L	• 100,000 L
Feedstock Loading	0.1 – 10 g	100 - 1000 g	100 – 1000 kg	10,000 kg
Objective	Organism Screening		Process R&D	Market Development
Fraction of Commercial Scale	1/100,000,000	1/1,000,000	1/1,000	1/100 - 1/10

ADO Key Challenges

First-of-a-Kind Technology Development	Feedstock Processing/Handling
Process Integration	Technology Scaling Uncertainty Scaling Tools
Materials Compatibility, and Equipment Design and Optimization	Variations in Performance at Different Scales

Energy Efficiency & Renewable Energy

National Lab PDUs Within ADO Portfolio

Advanced Biofuels PDU LBNL Biomass Feedstock PDU INL Integrated Biorefinery PDU NREL

Hydrothermal Liquefaction (HTL) PDU PNNL

Thermochemical PDU - NREL

Energy Efficiency & Renewable Energy

ADO Interface with R&D Programs and Industry

ADO Project Management Approach

- Modify as appropriate for scale and objective (i.e., verifications)
- Review Experimental Plans, Fabrication, Execution

Recent FOAs

Energy Efficiency & Renewable Energy

On September 14, 2018, DOE announced up to \$22 million for 10 selections

NERC

Renewable Energy

IBR Optimization Selections - FY17

- Announced on September 20, 2017
- Up to \$15M for eight projects
 - **Topic Area 1:** Continuous handling of solid materials and feeding systems to reactors
 - **Topic Area 2:** High value products from waste and/or other under-valued streams in an IBR
 - **Topic Area 3:** Industrial separations within an IBR
 - **Topic Area 4:** Analytical modeling of solid materials and reactor feeding systems

PD2B3 FOA Update – FY16

 Project Definition for Pilot and Demonstration Scale Manufacturing of Biofuels, Bioproducts, and Biopower (PD2B3)

Demonstration-Scale Integrated Biorefineries	AVAPCO, LLC
AVAPCO LanzaTech	LanzaTech, Inc.
Pilot-Scale Integrated Biorefineries	Global Algae Innovations
GLOBAL ALGAE INNOVATIONS	ThermoChem Recovery International, Inc.
Pilot-Scale Waste-to-Energy Projects	Rialto Bioenergy, LLC
Water Research FOUNDATION	Water Research Foundation

Defense Production Act (DPA) Initiative

Begun in July 2011, Agriculture, Energy, and Navy Committed \$510 M (\$170 M from each agency) Hydrocarbon jet and diesel biofuels in the near term

- Domestically produced fuels from non-food feedstocks.
- Drop-in, fully compatible, MILSPEC fuels
- Demonstration of the production and use of more than 100 million gallons per year will dramatically reduce risk for drop-in biofuels production and adoption.

Renewable Energy

Company	Location	Feedstock	Conversion Pathway	Off-Take Agreements	Capacity (MMgpy)
Emerald Biofuels	Gulf Coast	Fats, Oils, and Greases	Hydroprocessed Esters and Fatty Acids (HEFA)	TBD	82.0
	McCarran, NV	Municipal Solid Waste	Gasification – Fischer Tröpsch (FT)	UNITED Air bp Cathay Pacific	10.0
Red Rock Biofuels	Lakeview, OR	Woody Biomass	Gasification – Fischer Tröpsch (FT)	FedEx SOUTHWEST	12.0
			-	ENEROV Energ	y Eniciency &

ADO Lab AOP Projects

An Affordable Advanced Biomass Cookstove with Thin Film Thermoelectric Generator	LBNL
Development and Standardization of Techniques for Bio-oil Characterization	NREL
The Engineering of Catalyst Scale Up	NREL
Codes and Standards in IBR's	ORNL
Feedstock to Function: Improving Biobased Product and Fuel Development Through Adaptive Technoeconomic and Performance Modeling	LBNL
Integrated Computational Tools to Optimize and De-Risk Feedstock Handling & High- Pressure Reactor Feedings Systems: Application to Red Rock Biofuels' Biorefinery	NREL
Strategies for Co-processing in Refineries	NREL
Materials Degradation in Biomass Derived Oil	ORNL
Sustainable Production of JP-10	LANL
Analysis for JET High Performance Fuels	SNL
GARDN Collaboration U.S Canada Aviation Fuels at PNNL	PNNL
Evaluation of Bio-oils for Use in Marine Engines	ORNL

Pacific Northwest

NATIONAL LABORATORY

24 | Bioenergy Technologies Office

Energy Efficiency & Renewable Energy

Co-Optima

Energy Efficiency & Renewable Energy

Co-Optima Overview

Objective: Advance the underlying science needed to develop fuel and engine technologies that will work in tandem to achieve significant efficiency and emissions benefits

- Two DOE Offices:
 - Bioenergy Technologies Office
 - Vehicle Technologies Office
- Nine National Labs
- More than 20 university and industry partners

Energy Efficiency & Renewable Energy

Co-Optima Approach

Light-Duty

- Near-term opportunity improved efficiency at higher load (Boosted Spark Ignition)
- Mid-term opportunity improved efficiency across drive-cycle (Multi-Mode Spark Ignition/Advance Compression Ignition)

Medium/Heavy-Duty

- Near-term opportunity improved engine emissions (Mixing Controlled Compression Ignition)
- Longer-term high risk, high reward opportunity for improved efficiency and emissions (Kinetically Controlled Compression Ignition)

FY18 Programmatic Accomplishment: Final List of Blendstocks for **Boosted Spark Ignition**

Co-Optima FY18 FOA: Bioblendstocks to Optimize MCCI Engines

Awardees will develop and demonstrate single- or multi-component bioblendstocks for use in medium- and heavy-duty mixing controlled compression ignition (MCCI) engines.

Bioblendstocks will improve at least two of 4 properties: energy density, sooting propensity, cetane number, and cold weather behavior.

* Stony Brook University

Auburn University (Auburn, AL) - In partnership with Microvi Biotech, Cornell University, University of Alabama, EcoEngineers, and Virginia Tech, Auburn will develop enhanced bioprocess methods for butyl acetate production, and test its MCCI potential through droplet and engine testing.

SUNY-Stony Brook (Stony Brook, NY) - In partnership with RTI International, Stony Brook will develop and test a naphthenic distillate as an MCCI bioblendstock.

University of Massachusetts Lowell (Lowell, MA) - In partnership with University of Maine and Mainstream Engineering, will develop a bioblendstock of upgraded fast pyrolysis bio-oil, and test its MCCI potential through engine testing.

University of Michigan (Ann Arbor, MI) - In partnership with Penn State University and Volvo Group Truck Technology, Michigan will develop a bioblendstock of upgraded algae hydrothermal liquefaction liquids, and test its MCCI potential through engine and particulate matter testing.

University of Wisconsin-Madison (Madison, WI) - Will develop a catalytic process for ethanol conversion to C8+ ethers, and test the potential for the bioblendstock to reduce the fuel penalty of MCCI engine after treatment

The Team

Energy Efficiency & Renewable Energy

BETO ADO Team

Jim Spaeth Program Manager

Liz Moore Technology Manager

Mark Shmorhun Technology Manager

Mohan Gupta S Technical Advisor (FAA/DOT)

Siva Sivasubramanian) ORISE Fellow

Josh Messner, AST Team Leader

Remy Biron, AST Project Monitor

Art Wiselogel, AST Project Monitor

T Camryn Sorg, The Building People Program Support

Energy Efficiency & Renewable Energy

BETO ADO - Co-Optima Team

Alicia Lindauer Technology Manager, Co-Optima Lead

Trevor Smith, AST Project Monitor

Robert Natelson, AST Project Monitor

Camryn Sorg, The Building People Program Support

Co-Optimization of Fuels & Engines

Energy Efficiency & Renewable Energy

Peer Review

Energy Efficiency & Renewable Energy

ADO Projects Presenting at Peer Review

Reviewers – ADO Integration & Scaling (I&S) Session

Name	Affiliation	
Dr. Raghubir Gupta (Lead)	Susteon, Inc.	
Mr. Mike Fatigati	Independent Consultant	
Dr. Daniel Lane	Sallie Consulting	
Ms. Andrea Slayton	Slayton Technical Services	
Mr. Mark Warner	Warner Advisors	
Dr. Luca Zullo (Only Wednesday)	VerdeNero	

Reviewers – ADO Analysis & Modeling (A&M) Session

Name	Affiliation	
Dr. Luca Zullo (Lead)	VerdeNero	
Mr. Mike Fatigati	Independent Consultant	
Dr. Raghubir Gupta	Susteon, Inc.	
Dr. Daniel Lane	Sallie Consulting	
Mr. Mark Warner	Warner Advisors	

Reviewers – Co-Optima Session

Name	Affiliation
Harry Baumes (Lead)	USDA, Retired
Charles Abbas	IBiocat
Bhupendra Khandelwal	University of Sheffield
Kristin Lewis	DOT-Volpe
Cory Phillips	Phillips 66
Steve Przesmitzki	Aramco

Thank You

Jim Spaeth

Program Manager Advanced Development & Optimization <u>Jim.Spaeth@ee.doe.gov</u>

Energy Efficiency & Renewable Energy

An Affordable Advanced Biomass Cookstove with Thin Film Thermoelectric Generator	LBNL
Development and Standardization of Techniques for Bio-oil Characterization	NREL
The Engineering of Catalyst Scale Up	NREL
LIBERTY - Launch of an Integrated Bio-refinery with Eco-sustainable and Renewable Technologies in Y2009	POET Project Liberty, LLC
Biomass - Feedstock User Facility	INL
Improved Feeding and Residual Solids Recovery System for IBR	Thermochemical Recovery International Inc.
Biomass Gasification for Chemicals Production Using Chemical Looping Techniques	The Ohio State University
Building Blocks from Biocrude: High Value Methoxyphenols	Research Triangle Institute (RTI)
Pilot-Scale Algal Oil Production	Global Algae Innovations
Integration and Scale Up - NREL	NREL
Strategies for Co-processing in Refineries	NREL
Improved Hydrogen Utilization and Carbon Recovery for Higher Efficiency Thermochemical Bio-oil Pathways	Research Triangle Institute
Low Carbon Hydrocarbon Fuels From Industrial Off Gas	LanzaTech, Inc.

Integration & Scale-Up Session

Small Scale Decentralized Fuel Production Facilities Via Advanced Heat Exchanger-Enabled Biorefineries	ThermoChem Recovery International, Inc.
Converting MSW Into Low-Cost, Renewable Jet Fuel	Fulcrum Bioenergy
Woody Biomass Biorefinery Capability Development	Red Rocks Biofuels
Upgrading of Stillage Syrup into Single Cell Protein for Aquaculture Feed	White Dog Labs
Pilot-Scale Biochemical and Hydrothermal Integrated Biorefinery (IBR) for Cost-Effective Production of Fuels and Value Added Products	South Dakota School of Mines and Technology
Multi-stream Integrated Biorefinery Enabled by Waste Processing	Texas A&M Agrilife Research
Hydrothermal Processing of Biomass	PNNL
HYPOWERS: Hydrothermal Processing of Wastewater Solids	Water Research Foundation (WRF)
Rialto Advanced Pyrolysis Integrated Biorefinery	Rialto Bioenergy Facility LLC
LBNL ABPDU Support	LBNL
Pilot Scale Integration	NREL
Advanced Biofuels and Bioproducts with AVAP	AVAPCO LLC
Materials Degradation in Biomass Derived Oil	ORNL

Analysis & Modeling Session

Codes and Standards in IBR's	ORNL
Feedstock to Function: Improving Biobased Product and Fuel	
Development Through Adaptive Technoeconomic and Performance	
Modeling	LBNL
Integrated Computational Tools to Optimize and De-Risk Feedstock	
Handling & High-Pressure Reactor Feedings Systems: Application to	
Red Rock Biofuels' Biorefinery	NREL
Integrated Process Optimization for Biochemical Conversion	Clemson University
Analytical Modeling of Biomass Transport and Feeding Systems	Purdue University
Improved Biomass Feedstock Materials Handling and Feeding	
Engineering Data Sets, Design Methods, and Modeling/Simulation	
Tools	Forest Concepts, LLC
Sustainable Production of JP-10	LANL
Analysis for JET High Performance Fuels	SNL
GARDN Collaboration U.S Canada Aviation Fuels at PNNL	PNNL
Evaluation of Bio-oils for Use in Marine Engines	ORNL

ADO Manages: Technology Commercialization Fund Projects

Project Title	Lead Institution	Partners
Fully Renewable Polyurethane Resins Produced from Algae and other Feedstocks	NREL	Patagonia
Sustainable Graphite for Lithium Ion Batteries	NREL	Ensyn Technologies
Lignin-Derived Ionic Liquids: Synthesis and Application in Biopolymer Processing	LBNL	Domtar Corp Illium Technologies LLC Natural Fiber Welding Proionic, GmbH
Transfer & Validation of Copyrighted NREL Spectroscopy IP for Rapid Biomass Composition to Next-Generation Ultra Low-Cost Near-Infrared (NIR) Spectrometers	NREL	KS Technologies Texas Instruments
Reactive Distillation: Alcohol-to-Jet Application	PNNL	Lanzatech
Advanced Cellobiohydrolases	NREL	Novozymes
SIS Biofuel Adsorbents	Argonne	
energy Technologies Office		ENERGY Energy Efficiency Renewable Energy

- By 2019, select three or more drop-in jet and/or diesel candidate pathways for potential verification in 2022.
- By 2020, assess technology readiness of candidate pathways and identify any required capital enhancements for process development unit (PDU) for 2022 verification.
- By 2021, confirm the selected pathway for 2022 verification and complete related PDU capital enhancements.
- By 2023, identify three or more additional technologies capable of utilizing economically advantaged feedstocks and support the 2030 MFSP goal of \$2.5/GGE.
- By 2025, select three additional technologies capable of utilizing economically advantaged feedstocks and support the 2030 MFSP goal of \$2.5/GGE.

RFI - Catalyst Production and PDU Enhancements

Understanding Catalyst Production and Development Needs at National Laboratories

Objectives

- Information to identify and understand areas of research, capabilities, and yet-to-be-addressed challenges pertinent to production scale-up challenges of novel catalysts employed in biological, thermochemical or hybrid processes for the efficient conversion of lignocellulosic, waste, and algal feedstocks to produce biofuels and bioproducts.
- Additionally, information on capabilities and functionalities that need to be developed at process development units (PDUs) located at National Laboratories to enable successful transition of early stage research to engineering-scale research.

Categories

- 1. Catalyst production for biological processes
- 2. Catalyst production for thermochemical processes
- 3. Capabilities and functionalities to be developed in PDUs located at National Laboratories
- Closed on October 22, 2018
- Total of 23 responses from academic institutions, national laboratories and industries
 - 4 for biochemical
 - 14 for thermochemical
 - 10 for PDU enhancement and development needs

