Spray Process for Manufacturing Modification of Reactor Components Development of Low Temperature Fuel Cladding and Surface

» Fifth level Kumar Sridharan University of Wisconsin, Madison (lead institution)

DOE AWARD NUMBER (NEET PROGRAM): DE-NE0008682 OCTOBER 1ST 2017 TO SEPTEMBER 30TH, 2020

ADVANCED METHODS FOR MANUFACTURING PROGRAM REVIEW, KNOXVILLE, TN DECEMBER 4th TO 6th, 2018

Project Team Project Team

Lead Institution - University of Wisconsin, Madison:

- Mia Lenling
- $\overline{}$ what Luming – Dr. Hwasung Yeom
	- Second level rog oonnoon
. . . . – Greg Johnson
	- $\overline{\mathsf{d}}$ – Ben Maier
	- Tyler Dabney

Collaborating Institutions

- University of California, Berkeley (Dr. Peter Hosemann)
- Oak Ridge National Laboratory (Dr. David Hoelzer)
- Los Alamos National Laboratory (Dr. Stuart Maloy)
- Oxford University, UK (Dr. Patrick Grant, unpaid international collaborator)

Federal Manager: Dr. Tansel Selekler **Technical Point of Contact:** Dr. Bruce Landrey

Concerted to the Continued Presentation Outline

- Click to edit Master text styles **- Introduction, Motivation, and Project Overview**
- $\overline{\mathcal{M}}$ of **Brief Review of Cold Spray Deposition** Process
- Development of Cold Spray Process for Oxide Dispersion Strengthened (ODS) Steel
- Cold Spray Manufacturing of ODS Fuel Cladding Tubes

Introduction, Motivation, and Project Overview

reed Ohioetives of the Dre Broad Objectives of the Project

Develop low temperature, solid-state (no melting *involved*) powder spray deposition process (cold $\frac{1}{2}$ spray process) as **a**:

- Rapid, near-net shape manufacturing of oxide dispersion strengthened (ODS) steel cladding tubes
- High deposition rate coating technology for corrosion and wear protection, and repair of nuclear reactor components

Oxide Dispersion Strengthened (ODS) Steels

esse order aire deside restieles A **UITULU JILUU** ODS steels are ferritic (BCC) and contain fine dispersion of nanometer-sized oxide particles (Y-Ti-O) [0.2 to 0.3 wt.%]

TEM image showing nano-scale oxide particles in ferritic matrix of ODS steel [1, left] and atomic probe tomography (APT) image of nanoparticles [2]

- \blacksquare Has the low radiationinduced swelling of conventional ferritic steels
- High temperature strength superior to conventional ferritic steels
- Regarded as a crosscutting material for multiple reactor concepts [1] Sridharan et al., UW-Madison

[2] courtesy Dr. Hoelzer, ORNL

200

 $\mathbf{0}$

Ole of Oxide Nanoparticle (iia Role of Oxide Nanoparticle (nanoclusters) in Ferritic Steels

NC: Oxide Nanoclusters

"Influence of Particle Dispersions on the high Temperature Strength of Ferritic Allloys", D. Hoelzer, Journal of Nuclear Materials, 2007.

400

Temperature (°C)

200

600

800

Conventional Manufacturing of ODS Cladding Tubes – Slow and Expensive Process

- Molting processes cannot be used as they lead to upward stratification of oxide nanoparticles – Fourth level **Melting processes cannot be used**
- Milled powders are canned and degassed at 400°C and subjected to multiple hot/ warm extrusion steps (8 -10 steps) at temperatures > 1000°C and lower temps.
- **Low strain rate extrusion processes** not conducive to large-scale manufacturing
- May lead to grain anisotropy, and anisotropy in mechanical properties

Conventional fabrication of ODS steel tubes requires multiple extrusion steps [3]

[3] "Recent Developments in Irradiation-Resistant Steels", G.R. Odette, et al, *Annu. Rev. Mater Res.,* 2008, 28, p. 47*.*

Powders for ODS for Conventional Manufacturing of Cladding

ODS powders *after* ball milling (powder from Dr. Maloy, LANL)

- Gas atomize ferritic steel powders with Y, Ti, O
- Atomization does not fully solutionize Y, Ti, and O therefore ball milling is done with some added FeO to achieve full solutionizing (mechanical alloying)
- **-** During high temperature consolidation treatments, oxide nanoclusters come out of solution

Concept of Manufacturing ODS tube via Cold Spray Process

.
Three maier stens fer cold snray man – Second level Three major steps for cold spray manufactured ODS cladding tube

Potential Benefits:

- Eliminates multiple extrusion steps
- May eliminate ball milling mechanical alloying
- Fabrication process faster and cheaper

Key Objectives and Milestones

- process for the manufacture of ODO
cladding tubes **1. Optimization** of the powder spray process for the manufacture of ODS cladding tubes
- \sim Second level in the second level in acposition the \sim Fourth level \sim 2. Post-deposition **thermo-mechanical treatments**
- **3. Characterization and testing of ODS** steel cladding tubes produced by cold spray process
- **4. Surface modification and coatings** by cold spray process for addressing corrosion and wear in reactor components, (i) single material coatings, (ii) compositionally-graded coatings, and (iii) multi-layered coatings.
- **5. Bench-marking** and **alternative** novel approaches

Brief Overview of Cold Spray Deposition Process

cld Covey Dreeges Cold Spray Process

Zn cold spray coating on steel substrate

[Courtesy UW-Madison]

- Powder particles of the coating material propelled at supersonic velocities by a gas onto the surface of a part to form a coating or deposit
- Particle temperature is low particles are not melted and deposition occurs in solid state
- Coating/deposit formation occurs by particle deformation and an associated adiabatic shear mechanism

Cold Spray Process - Attributes as a Manufacturing Process

- formod **Performed at ambient temperature**
- » Fifth level **Performed at atmospheric pressure**
- High deposition rates fast manufacturing
- Supports factory and field fabrication
- **High technology readiness level**

Cold Spray Laboratory at University of Wisconsin, Madison (est. 2012)

Robot for pre-programmed Sample stage and dust Sound-proof spray booth movement of spray gun

- 4000-34 KINETIK System, from ASB Industries/CGT-GmBH
- Spray booth from Noise **Barriers**
- Robot controlled (Nachi

Sample stage and dust collector (below that)

Nitrogen/helium gas cylinders

system, from Antennen) Mitrogen/helium Robot controls (left) and spray gun control (right)

Development of Cold Spray Process for Manufacture of ODS Steel

Feedstock Powder for Cold Spray Process

- Received from Oak Ridge National Laboratory
	- 14YWT (Fe-14Cr-3W-0.4Ti-0.2Y-0.25O)
	- Gas-atomized, spherical powder
	- Size less than 44 µm
	- Large grain size (4 to 8 µm)

Nanoparticles in Feedstock Powder

dispersed in the ferritic steel matrix Y and Ti -rich nanoparticles in size of 10 nm to 200 nm are

Transmission Electron Microscopy (TEM) lamellae prepared from a particle

TEM images showing fine particles in the matrix

T and II Detection in the Fine Y and Ti Detection in the Fine Nanoparticles in 14YWT Powder

e Click to edit Master the Click to edit and
The Click to edit and the Click to edit and **HAADF Image EDS spectra**

Inside nanoparticle

Outside nanoparticle

UNIVERSITY OF **OXFORD**

Thick and Dense ODS Cold Spray Deposit on Flat Substrates

Before spray After spray

- 14YWT powder was successfully deposited onto 6061-T6 aluminum flats
- Deposits were very dense with negligible porosity
- XRD confirmed no phase change or oxide inclusions of powder during deposition

XRD peaks for the powder and the deposit

LOS Alamos

Initial Parametric Investigation of Cold Spray Process for Optimal Parameter

 $\frac{1}{\sqrt{2}}$ as the extreme of $\frac{1}{\sqrt{2}}$ styles st **Three different gas conditions were investigated**

- 100% nitrogen
- \mathbf{r} Fourth level \mathbf{r} • Helium/nitrogen mixture A
- Helium/nitrogen mixture B (more helium gas)

Five substrates were investigated

- Annealed 6061
- 6061-T6
- 7075-T6
- Two different cold rolled 6061-T6 substrates

Parametric Investigation of Cold Sp Parametric Investigation of Cold Spray Process (Propellant Gas and Substrate Effect)

Hardness range of substrates from 60HV – 170HV

• **No significant affect seen from cold spray process in terms of deposition thickness**

Optimal cold spray parameter set with 6061-T6 substrate because it is readily available and can be easily dissolved

> • **Showed the least amount of porosity**

Further Parametric Investigation of Cold Spray Process (powder size effect)

ODS tube with $25-44$ µm powder – Second level

ODS tube including $< 25 \mu m$ powder

- Two different powder size distributions investigated:
	- 25-44 µm size powder
	- -44 um size powder that included powder sizes less than 25 um
- The -44 um sized powder increased both the deposit density and thickness

wny is there an increase in de Why is there an increase in deposition thickness and density?

• Smaller particle sizes were able to deform more readily (higher velocity) and could deposit and fill in pores between the larger particles increasing the deposit thickness and decreasing the porosity

Microstructure of as-deposited 14YWT

FIB lift-out technique

Grain refinement (grain size is less than 1µm)

High density of line dislocations in the small grains

Dislocation forest and disappearance of the nanoparticles

Dissolution of Aluminum Mandrel

dissolving aluminum flats

- Dissolution studies on both 6061-T6 and 7075-T6 aluminum flats were performed in 20% NaOH solution
- 6061-T6 dissolved faster than 7075-T6
- Of course, stirring increased dissolution rate

Cost-heat Treatment of ODS FI Post-heat Treatment of ODS Flats/Tubes

- Annealing experiments were conducted for precipitation the Y-Ti-O nanoclusters and improve ductility
- Flats/Tubes were annealed in a quartz tube furnace at 800 $\mathrm{^{\circ}C}$, 900 $\mathrm{^{\circ}C}$, 1000 $\mathrm{^{\circ}C}$ and 1100 $\mathrm{^{\circ}C}$ for 1 hour

Traatmant (SFM Images & Hardnes Microstructural Evolution during Post-heat Treatment (SEM Images & Hardness)

- Grain growth with increasing annealing temperature
- Annealing studies were performed on un-optimized ODS tube deposit

INIOI USTI HUTHI EI ETUITIUII HHII
boot Trootmont (TEM Impero) Microstructural Evolution during Postheat Treatment (TEM Images)

and *reprecipitation* of nanoparticles or nanoclusters – Second level The heat treatment (1000 °C) induced strain relaxation, recrystallization,

• Third level $\frac{1}{2}$ » Fifth level **Nanoparticle dispersed**

Annealed out dislocation forest

in the grain
 in the grain
 in the grain
 in the grain (~ 40 nm)

Unchnoar Composition of Nam
in Hoot Trooted ABS Benesit Chemical Composition of Nanoparticles in Heat Treated ODS Deposit

HAADF Images EDS line profile

Ti and Y-rich and Property and **The State low oxygen particle**

Cold Spray Manufactured ODS Fuel Cladding Tubes

Step 1: ODS Cladding Tube Fabrication: Cold Spray Deposition

- Deposition was performed on a 6061-T6 aluminum tube mandrel (0.375" OD) while rotating
- Cold spray parameters were adjusted to achieve the highest quality deposit using 4" long tubes
- A longer 10" tube was then produced to show scalability for full length cladding tube

Deposition of ODS on 6061-T6 Aluminum Tube Mandrel

5" tube formed in ~ 60 seconds Thickness: 1 mm for ≤ 44 µm size particles

Step 2: Dissolution of Aluminum Tube Mandrel to leave free-standing ODS Tube

- Dissolution of the aluminum tube mandrel in 20% NaOH solution
- Final polishing of the ODS cladding tube was done to improve surface finish

OXFORD

Clup of Vacaanii Maal McGlinu
Tubo Step 3: Vacuum Heat Treatment of ODS Tube

Before vacuum heat treatment After vacuum heat treatment

- Tubes were vacuum heat treated at 1085° C for 1 hour to eliminate all residual porosity in the cladding tube
- Vacuum heat treatment serves to both precipitate oxide nanoclusters and promote densification

Vacuum heat treatment performed at Thermal Spray Technologies (TST)

Click to edit Master title style Final Free-Standing ODS Cladding Tube

8" ODS cladding tube

Immediate Future Work Immediate Future Work

- engineering (e.g., grain size, nanocluster size/density) • Further optimization of the manufacturing process including microstructural
- Mechanical testing of ODS cladding tubes
- Heavy ion irradiation experiments on ODS cladding tubes
- Seeking future opportunities for neutron irradiation experiments and associated post-irradiation examination research (not a part of NEET program)
- Surface modification and coatings for corrosion and wear resistance (e.g., multilayered coating and compositionally graded coatings)

kumar.sridharan@wisc.edu

Tel: 608-263-4789

University of Wisconsin Cold Spray Laboratory