Development of Low Temperature Spray Process for Manufacturing Fuel Cladding and Surface Modification of Reactor Components

Kumar Sridharan University of Wisconsin, Madison (lead institution)

DOE Award Number (NEET PROGRAM): DE-NE0008682 October 1<sup>ST</sup> 2017 to September 30<sup>TH</sup>, 2020

Advanced Methods for Manufacturing Program Review, KNOXVILLE, TN DECEMBER 4<sup>th</sup> TO 6<sup>th</sup>, 2018













## **Project Team**

## Lead Institution - University of Wisconsin, Madison:

- Mia Lenling
- Dr. Hwasung Yeom
- Greg Johnson
- Ben Maier
- Tyler Dabney

## **Collaborating Institutions**

- University of California, Berkeley (Dr. Peter Hosemann)
- Oak Ridge National Laboratory (Dr. David Hoelzer)
- Los Alamos National Laboratory (Dr. Stuart Maloy)
- Oxford University, UK (Dr. Patrick Grant, unpaid international collaborator)

Federal Manager: Dr. Tansel Selekler Technical Point of Contact: Dr. Bruce Landrey





# **Presentation Outline**

- Introduction, Motivation, and Project Overview
- Brief Review of Cold Spray Deposition Process
- Development of Cold Spray Process for Oxide Dispersion Strengthened (ODS) Steel
- Cold Spray Manufacturing of ODS Fuel Cladding Tubes









# Introduction, Motivation, and Project Overview





# **Broad Objectives of the Project**

Develop low temperature, solid-state (*no melting involved*) powder spray deposition process (cold spray process) as a:

- Rapid, near-net shape manufacturing of oxide dispersion strengthened (ODS) steel cladding tubes
- High deposition rate coating technology for corrosion and wear protection, and repair of nuclear reactor components







## **Oxide Dispersion Strengthened (ODS) Steels**

 ODS steels are ferritic (BCC) and contain fine dispersion of nanometer-sized oxide particles (Y-Ti-O) [ 0.2 to 0.3 wt.%]



TEM image showing nano-scale oxide particles in ferritic matrix of ODS steel [1, left] and atomic probe tomography (APT) image of nanoparticles [2]

- Has the low radiationinduced swelling of conventional ferritic steels
- High temperature strength superior to conventional ferritic steels
- Regarded as a crosscutting material for multiple reactor concepts
  Ill Sridharan et al., UW-Madison

[1] Sridharan et al., Ow-Madison [2] courtesy Dr. Hoelzer, ORNL









## Role of Oxide Nanoparticle (nanoclusters) in Ferritic Steels







**NC: Oxide Nanoclusters** 

"Influence of Particle Dispersions on the high Temperature Strength of Ferritic Allloys", D. Hoelzer, *Journal of Nuclear Materials*, 2007.





## **Conventional Manufacturing of ODS Cladding Tubes – Slow and Expensive Process**

- Melting processes cannot be used as they lead to upward stratification of oxide nanoparticles
- Milled powders are canned and degassed at 400°C and subjected to multiple hot/ warm extrusion steps (8 -10 steps) at temperatures > 1000°C and lower temps.
- Low strain rate extrusion processes not conducive to large-scale manufacturing
- May lead to grain anisotropy, and anisotropy in mechanical properties



## **Conventional fabrication of ODS steel tubes requires multiple extrusion steps [3]**

[3] "Recent Developments in Irradiation-Resistant Steels", G.R. Odette, et al, *Annu. Rev. Mater Res.,* 2008, 28, p. 47.





## **Powders for ODS for Conventional Manufacturing of Cladding**





ODS powders after ball milling (powder from Dr. Maloy, LANL)

- Gas atomize ferritic steel powders with Y, Ti, O
- Atomization does not fully solutionize Y, Ti, and O therefore ball milling is done with some added FeO to achieve full solutionizing (mechanical alloying)
- During high temperature consolidation treatments, oxide nanoclusters come out of solution





# **Concept of Manufacturing ODS tube via Cold Spray Process**

Three major steps for cold spray manufactured ODS cladding tube



## **Potential Benefits:**

- Eliminates multiple extrusion steps
- May eliminate ball milling mechanical alloying
- Fabrication process faster and cheaper





## **Key Objectives and Milestones**

- 1. Optimization of the powder spray process for the manufacture of ODS cladding tubes
- 2. Post-deposition thermo-mechanical treatments
- 3. Characterization and testing of ODS steel cladding tubes produced by cold spray process
- Surface modification and coatings by cold spray process for addressing corrosion and wear in reactor components, (i) single material coatings, (ii) compositionally-graded coatings, and (iii) multi-layered coatings.
- 5. Bench-marking and alternative novel approaches











# Brief Overview of Cold Spray Deposition Process







# **Cold Spray Process**







Zn cold spray coating on steel substrate

- Powder particles of the coating material propelled at supersonic velocities by a gas onto the surface of a part to form a coating or deposit
- Particle temperature is low particles are not melted and deposition occurs in solid state
- Coating/deposit formation occurs by particle deformation and an associated adiabatic shear mechanism





# **Cold Spray Process – Attributes as a Manufacturing Process**

- Performed at ambient temperature
- Performed at atmospheric pressure
- High deposition rates fast manufacturing
- Supports factory and field fabrication
- High technology readiness level





## **Cold Spray Laboratory at University of Wisconsin, Madison (est. 2012)**



**Robot for pre-programmed movement of spray gun** 

- 4000-34 KINETIK System, from ASB Industries/CGT-GmBH
- Spray booth from Noise Barriers
- Robot controlled (Nachi system, from Antennen)



Sample stage and dust collector (below that)



Nitrogen/helium gas cylinders



Sound-proof spray booth



Robot controls (left) and spray gun control (right)









# Development of Cold Spray Process for Manufacture of ODS Steel





# Feedstock Powder for Cold Spray Process



- Received from Oak Ridge National Laboratory
  - 14YWT (Fe-14Cr-3W-0.4Ti-0.2Y-0.25O)
  - Gas-atomized, spherical powder
  - Size less than 44 µm
  - Large grain size (4 to 8 µm)





## **Nanoparticles in Feedstock Powder**

 Y and Ti -rich nanoparticles in size of 10 nm to 200 nm are dispersed in the ferritic steel matrix

Transmission Electron Microscopy (TEM) lamellae prepared from a particle



#### TEM images showing fine particles in the matrix









#### HAADF Image

#### **EDS spectra**



| Atomic %         | Fe   | Cr   | 0    | W   | Ti      | Y                |
|------------------|------|------|------|-----|---------|------------------|
| Inside particle  | 73.4 | 11.5 | 12.0 | 0.5 | too low | <mark>2.2</mark> |
| Outside particle | 72.5 | 15.1 | 11.9 | 0.5 | -       | -                |

Inside nanoparticle

#### **Outside nanoparticle**

UNIVERSITY OF







## Thick and Dense ODS Cold Spray Deposit on Flat Substrates





Before spray

After spray

- 14YWT powder was successfully deposited onto 6061-T6 aluminum flats
- Deposits were very dense with negligible porosity
- XRD confirmed no phase change or oxide inclusions of powder during deposition





powder and the deposit





Los Alamos



## Initial Parametric Investigation of Cold Spray Process for Optimal Parameter

Three different gas conditions were investigated

- 100% nitrogen
- Helium/nitrogen mixture A
- Helium/nitrogen mixture B (more helium gas)

## Five substrates were investigated

- Annealed 6061
- 6061-T6
- 7075-T6
- Two different cold rolled 6061-T6 substrates







## Parametric Investigation of Cold Spray Process (Propellant Gas and Substrate Effect)



Hardness range of substrates from 60HV – 170HV

- No significant affect seen from cold spray process in terms of deposition thickness
- Optimal cold spray parameter set with 6061-T6 substrate because it is readily available and can be easily dissolved
  - Showed the least amount of porosity





## **Further Parametric Investigation of Cold Spray Process (powder size effect)**

ODS tube with 25-44 µm powder



ODS tube including < 25  $\mu$ m powder



- Two different powder size distributions investigated:
  - 25-44 µm size powder
  - -44 um size powder that included powder sizes less than 25 um
- The -44 um sized powder increased both the deposit density and thickness





# Why is there an increase in deposition thickness and density?



• Smaller particle sizes were able to deform more readily (higher velocity) and could deposit and fill in pores between the larger particles increasing the deposit thickness and decreasing the porosity





## **Microstructure of as-deposited 14YWT**



FIB lift-out technique



Grain refinement (grain size is less than 1µm)



High density of line dislocations in the small grains



Dislocation forest and disappearance of the nanoparticles





## **Dissolution of Aluminum Mandrel**



dissolving aluminum flats

- Dissolution studies on both 6061-T6 and 7075-T6 aluminum flats were performed in 20% NaOH solution
- 6061-T6 dissolved faster than 7075-T6
- Of course, stirring increased dissolution rate





## **Post-heat Treatment of ODS Flats/Tubes**



- Annealing experiments were conducted for precipitation the Y-Ti-O nanoclusters and improve ductility
- Flats/Tubes were annealed in a quartz tube furnace at 800°C, 900°C, 1000 °C and 1100 °C for 1 hour







## Microstructural Evolution during Post-heat Treatment (SEM Images & Hardness)



- Grain growth with increasing annealing temperature
- Annealing studies were performed on un-optimized ODS tube deposit







## **Microstructural Evolution during Postheat Treatment (TEM Images)**

 The heat treatment (1000 °C) induced strain relaxation, recrystallization, and *reprecipitation* of nanoparticles or nanoclusters

## Nanoparticle dispersed in the grain

# Annealed out dislocation forest

## Fine nano-particles (~ 40 nm)











100

80



Fe

## **Chemical Composition of Nanoparticles** in Heat Treated ODS Deposit

#### **HAADF Images**

Ti and Y-rich and low oxygen particle







#### **Ti-rich and high** oxygen particle









# Cold Spray Manufactured ODS Fuel Cladding Tubes





## Step 1: ODS Cladding Tube Fabrication: Cold Spray Deposition



- Deposition was performed on a 6061-T6 aluminum tube mandrel (0.375" OD) while rotating
- Cold spray parameters were adjusted to achieve the highest quality deposit using 4" long tubes
- A longer 10" tube was then produced to show scalability for full length cladding tube





## Deposition of ODS on 6061-T6 Aluminum Tube Mandrel



## **5" tube formed in ~ 60 seconds Thickness: 1 mm for < 44** $\mu$ **m size particles**







## **Step 2: Dissolution of Aluminum Tube Mandrel to leave free-standing ODS Tube**



- Dissolution of the aluminum tube mandrel in 20% NaOH solution
- Final polishing of the ODS cladding tube was done to improve surface finish







## **Step 3: Vacuum Heat Treatment of ODS Tube**



Before vacuum heat treatment



After vacuum heat treatment

- Tubes were vacuum heat treated at 1085°C for 1 hour to eliminate all residual porosity in the cladding tube
- Vacuum heat treatment serves to both precipitate oxide nanoclusters and promote densification

Vacuum heat treatment performed at Thermal Spray Technologies (TST)





## **Final Free-Standing ODS Cladding Tube**



**8" ODS cladding tube** 





## **Immediate Future Work**

- Further optimization of the manufacturing process including microstructural engineering (e.g., grain size, nanocluster size/density)
- Mechanical testing of ODS cladding tubes
- Heavy ion irradiation experiments on ODS cladding tubes
- Seeking future opportunities for neutron irradiation experiments and associated post-irradiation examination research (not a part of NEET program)
- Surface modification and coatings for corrosion and wear resistance (e.g., multilayered coating and compositionally graded coatings)





#### IN600 coating on steel















University of Wisconsin Cold Spray Laboratory

## **Kumar Sridharan**

kumar.sridharan@wisc.edu

Tel: 608-263-4789