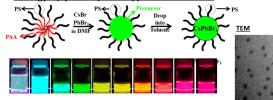



# Stable Perovskite Core-Shell Nanocrystals as Down-Converting **Phosphors for Solid State Lighting**

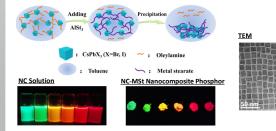
Zhitao Kang<sup>1</sup>, Young Jun Yoon<sup>1</sup>, Yajing Chang<sup>1</sup>, Zhiqun Lin<sup>1</sup>, Arun Thamban<sup>2</sup>, Hisham Menkara<sup>2</sup>, Christopher Summers<sup>2</sup> Georgia Institute of Technology<sup>1</sup> & PhosphorTech Corporation<sup>2</sup>



## Introduction

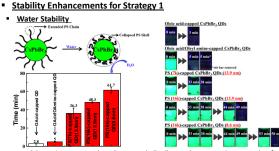



- · Cesium-based all inorganic perovskite nanocrystals have bandgap energies through the entire visible spectrum (410-700nm), narrow FWHM (12-42nm), excellent quantum yield (QY, 50-90%), and short radiative lifetimes (1-29 ns).1
- The bandgap is easily tunable by either changing the halide composition between chlorine. bromine, and iodine or by controlling the size of the nanocrystals or quantum dots (QDs).1
- Potential applications are in LEDs, X-ray Detectors, Lasers, etc.
- HOWEVER, long term stability is currently the major problem.
- Compositional Mixing Humidity Deterioration Phase Instability
- Colloidal Aggregation
- Thermal Degradation

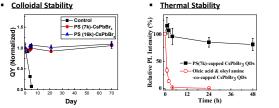

## **Motivation & Objectives**

- Improve stability of colloidal NCs by synthesizing NCs inside a unimolecular star-like block copolymer nanoreactor or impregnating pre-synthesized NCs in metal stearate.
- Utilize permanently tethered PS chains on the CsPbBr<sub>3</sub> surface to improve colloidal stability (prevent aggregation) in any solvent that dissolves PS.
- Form a protective shell layer around the CsPbBr<sub>3</sub> surface that can block penetration of water or other solvents that will break the perovskite crystal structure.
- Embed NCs in a matrix to improve water, composition, and phase stability

#### Strategy 1 (Synthesis) – PS-capped Perovskite NCs

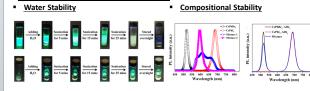



## Strategy 2 (Synthesis) – Perovskite-MSt Nanocomposites



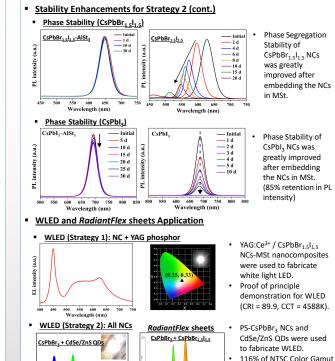

Contact Zhitao Kang (zhitao.kang@gtri.gatech.edu) Hisham Menkara (hisham@phosphortech.com)

# **Results & Discussion**




- Schematic represents the polystyrene shell collapse when exposed to water, thus forming a dense protective shell around the perovskite NCs.
- Star-like PAA-b-PS nanoreactors with same inner block PAA length but different outer block PS length (7k & 16k) was used to investigate the effectiveness of the PS shell in protecting the NC. PS-CsPbBr<sub>3</sub> NCs were photoluminescent for up to 20 times longer compared to conventional
- CsPbBr<sub>2</sub> NCs with linear ligands.




- Conventional CsPbBr<sub>3</sub> NCs with linear ligands showed drastic decay under ambient conditions due to colloidal aggregation. (>90% PL Decay in 5 days)
- PS-CsPhBr, NCs were stable under ambient conditions for more than 2 months (No PL Decay in 70 days; No PL Shift in 70 days; No Change in FWHM in 70 days) PS-CsPbBr<sub>3</sub> NCs showed 85% retention in PL at RT after storage at 80°C for 48 h while conventional perovskite NCs completely lost PL during this time period.

#### Stability Enhancements for Strategy 2



- CsPbBr<sub>3</sub>-MSt nanocomposites were photoluminescent even after directly exposing to water and sonicating for 25 mins while the CsPbBr<sub>3</sub> NCs alone completely lost PL.
- CsPbBra-MSt nanocomposites did not undergo any compositional mixing and maintained their distinct PL wavelengths even after 24 h of mixing while the NCs not embedded in MSt matrix quickly underwent compositional mixing in just 5 minutes.

References 1. Protesescu et al. Nano Letters 2015, 15, 3692.



**Results & Discussion** 

& 163% of sRGB Color LER=332 lm/W CCT=4218k Gamut. RadiantFlex sheets prepared with perovskite NC-MSt nanocomposites Wavelength (nm)

#### Conclusions

- Perovskite NCs with PLQY up to 81% and green emission bandwidth as narrow as 17.7 nm, RadiantFlex sheets with LER up to 332 lm/W prepared
- PS-CsPbBr<sub>2</sub> NCs & CsPbX<sub>2</sub>-MSt nanocomposites were both much more stable compared to conventional CsPbBr<sub>3</sub> NCs when exposed to water.
- PS-CsPbBr<sub>3</sub> NCs displayed greatly enhanced thermal stability in solution as well as in a polymer matrix compared to conventional CsPbBr<sub>2</sub> NCs.
- CsPbX<sub>2</sub>-MSt nanocomposites showed great enhancements in compositional as well phase stability compared to conventional CsPbX<sub>3</sub> NCs.

# Acknowledgement

This work was supported by U.S. DOE-STTR DE-SC0018611