Stable Perovskite Core-Shell Nanocrystals as Down-Converting
Phosphors for Solid State Lighting
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+ Thermal Degradation length (7k & 16k) was used to investigate the effectiveness of the PS shell in protecting the NC. 2 2 (85% retention in PL
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= Improve stability of colloidal NCs by synthesizing NCs inside a unimolecular star-like block copolymer
nanoreactor or impregnating pre-synthesized NCs in metal stearate.

Colloidal Stabi * Thermal Stability WLED and RadiantFlex sheets Application

= Utilize permanently tethered PS chains on the CsPbBr; surface to improve colloidal stability (prevent 9 = WLED (Strategy 1): NC + YAG phosphor
aggregation) in any solvent that dissolves PS. 5" ;’mo * YAG:Ce3* / CsPbBr,gly s
= Form a protective shell layer around the CsPbBr; surface that can block penetration of water or E B \%\ NCs-MSt nanocomboéites
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PAA * Conventional CsPbBr; NCs with linear ligands showed drastic decay under ambient conditions = WLED (Strategy 2): All NCs RadiantFlex sheets +  PS-CsPbBry NCs and
due to colloidal aggregation. (>90% PL Decay in 5 days) ¢ CsPbBr; + CsPbBr, (I, CdSe/ZnS QDs were used

*  PS-CsPbBr; NCs were stable under ambient conditions for more than 2 months.
(No PL Decay in 70 days; No PL Shift in 70 days; No Change in FWHM in 70 days)
*  PS-CsPbBr; NCs showed 85% retention in PL at RT after storage at 80°C for 48 h while
conventional perovskite NCs completely lost PL during this time period.
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= Stability Enhancements for Strategy 2

= Strategy 2 (Synthesis) — Perovskite-MSt Nanocomposites « Water Stabilit
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* Perovskite NCs with PLQY up to 81% and green emission bandwidth as

o, i,

‘ : CsPbX,(X=Br) ~ : Oleylamine oo narrow as 17.7 nm, RadiantFlex sheets with LER up to 332 Im/W prepared
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NC Solution NC-MSt Nanocomposite Phosphor stable compared to conventional CsPbBr; NCs when exposed to water.
- CsP.bBr‘;-MSt nanoc‘ompos‘ites were photoluminescent even after directly exposing to water and . PS—CstBr3 NCs displayed greatly enhanced thermal stability in solution as
é"”'cat'”gf” 25 mins while the CsPbBr; NCs alone completely lost PL. - ! well as in a polymer matrix compared to conventional CsPbBr; NCs.
= CsPbBr;-MSt nanocomposites did not undergo any compositional mixing and maintained their
distinct PL wavelengths even after 24 h of mixing while the NCs not embedded in MSt matrix quickly * CsPbX;-MSt nanocomposites showed great enhancements in compositional
underwent compositional mixing in just 5 minutes. as well phase stability compared to conventional CsPbX; NCs.
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