# U.S. DEPARTMENT OF OFFICE OF CYBERSECURITY, ENERGY SECURITY, AND EMERGENCY RESPONSE



## Secure SCADA Protocol (SSP-21) Characterization and Standardization

Lawrence Livermore National Laboratory (LLNL)

**Domingo Colon** 

Cybersecurity for Energy Delivery Systems Peer Review

November 6-8, 2018

# Summary: Secure SCADA Protocol (SSP-21) Characterization and Standardization

### Objective

 Advance SSP21 (Secure SCADA Protocol for the 21st Century) toward industry acceptance through characterization of network behavior and development of an industrial key infrastructure (IKI).

## Schedule

- Project start: March 2018
- Key deliverables:
  - SSP-21 Network Characterization Study (Jan 1, 2019)
  - Build network and SSP-21 model in NS-3 (March 2019)
  - Run characterization tests of communications between SSP-21 enabled devices and those without SSP-21 (<u>March</u> <u>2019</u>)
  - Standardization efforts and industry outreach



| Total Value of Award:   | \$ Year 1: 800K, Year 2: 800K,<br>Year 3: 790K |  |
|-------------------------|------------------------------------------------|--|
| Funds Expended to Date: | 258K (Through Sept 30, 2018)                   |  |
| Performer:              | LLNL                                           |  |
| Partners:               | Automatak (Pending)                            |  |

- Transition Plan:
  - Public report describing network characterization of SSP21 and IKI
  - Open source IKI specifications and reference implementation

U.S. DEPARTMENT OF

# Strategy for a resilient electric grid

|          | Adversary Tier 1&2                                                                      | Adversary Tier 3&4                                                                       | Adversary Tier 5&6                                                                        |
|----------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Identify | Risk Assessment, Asset Inventory and Management, Critical<br>Failure/Component Analysis |                                                                                          |                                                                                           |
| Protect  | Basic cyber hygiene                                                                     | Encryption, Network<br>Segmentation, Cyber<br>grid planning tools<br>(SSP-21 Encryption) | Firmware verification,<br>Control verification<br>(SSP-21 Authentication)                 |
| Detect   | Anti virus                                                                              | Data aggregation, threat detection (MMATR)                                               | Cross-domain<br>operational intelligence,<br>novel data analytics for<br>threat detection |
| Respond  | Manual mitigation of known threats                                                      | Orchestration and remediation                                                            | Cyber-physical fault<br>isolation, dynamic<br>network segmentation                        |
| Recover  |                                                                                         | OT forensics analysis<br>tools, cyber event<br>reconstruction                            | Optimized black start<br>strategies leveraging<br>DER                                     |
| Endure   | Microgrids, Component diversification, Cyber safe mode                                  |                                                                                          |                                                                                           |



# Advancing the State of the Art (SOA)

## State-of-the-Art Comparison:

- Secure SCADA Communications Protocol (SSCP) (IEEE 1711)
  - Based on shared secrets, not public key cryptography
  - Serial communications focused
- <u>SSP21</u> Integrity, Authentication & Authorization for *all* ICS Communications
  - Leverages public key cryptography and modern authenticated encryption (AE)
  - A protocol/PKI that is better suited for ICS than TLS
- Public Key Infrastructure (PKI)
  - High-profile breaches of root certificate authorities
  - Designed for global internet. Too complex for isolated ICS.
- <u>SSP21</u> Industrial Key Infrastructure (IKI)
  - Seamless integration of key management with ICS Operations
  - Simplicity and automation of implementation and operations

Characterize the network behavior and develop IKI for SSP21 to enable standardization and industry adoption. Leverage expertise in modelling and simulation (NS-3).



# Advancing the State of the Art (SOA)

## End-User Benefits:

- Facilitate acceptance of the protocol by manufacturers and asset owners by developing an IKI
  - Reduces the risk of protocol adoption
  - Increased likelihood of robust SSP-21 compatible device ecosystem
  - Transparency through open-source

## Advancing the Cybersecurity of Energy Delivery Systems:

- This emerging protocol "provides for cybersecure communications needed to operate resilient grid systems and/or components, at the generation, transmission or distribution levels without reliance on the public internet" by adding authentication and encryption capabilities to OT communications.
  - Provide integrity, authentication, and authorization for ICS communications
    - Resilient defense against man-in-the-middle, spoofing, authenticity, replay and data modification, message injection, and fuzzing attacks

# How to increase exposure, engage potential early adopters and gain acceptance of experimental results

• Focus on an open source and community driven approach

# Ensure the selection of appropriate evaluation measures

• Webinars, peer reviewed publications and conference participation

## **NS-3 model fidelity**

Novel approach to automation (Network mapping to NS-3 model generation)

## Scaling SSP-21 based NS-3 simulations

• Leverage experience gained from CES-21

### Selecting the appropriate test and evaluation architecture

• Utilize diverse LLNL resources – HPC mod/sim and Skyfall hardware

## **Progress to Date**

#### **ICS/SCADA Community Involvement**

- SSP-21 has completed open-source review and will soon be public (Automatak)
- IKI network characterization (<u>SDG&E</u>)
- Impact of SSP-21 on operational ICCP usage (August MRO Webinar WAPA)

#### Virtual Machine Based SSP-21 Bump–in–the-Wire Evaluation

 The experimental platform provides LLNL researchers with an initial modelling/simulation based capability to evaluate the impact of the SSP-21 protocol.

#### Performance statistics and network feature survey

• This study will inform researchers conducting upcoming NS-3 simulations on the most important metrics that should be measured.

#### Automating simulated activity model

 The LLNL team continues to develop a data processing pipeline that will automate the construction of user activity models from raw network data provided by 3<sup>rd</sup> party partners – Speeding up the time necessary to conduct HPC-based trials

#### Experimenting with NS-3 Direct Code Execution (DCE)

LLNL researchers are working to implement a Direct Code Execution (DCE) path for SSP-21 to improve the performance of the SSP-21 code libraries



# **Collaboration/Technology Transfer**

### Plans to transfer technology/knowledge to end user

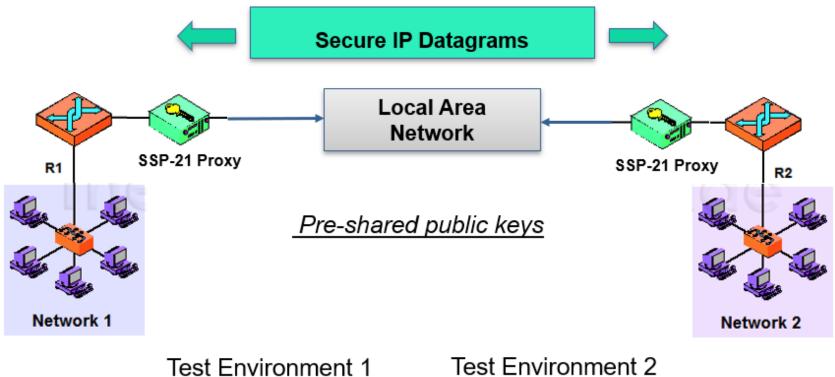
- Open sourcing SSP-21 and the Industrial Key Infrastructure (IKI) specification and reference implementation
- Strong focus on SSP-21 library documentation
- User guides and Best practice guides
- Publish white-papers, peer-reviewed publications and present in open-forums
  - Describe the results of community sourced use-cases
  - Focus on "Verification and validation"
- What are your plans to gain industry acceptance?
  - o Partner with equipment vendors (Year 2 3)
  - Source 3<sup>rd</sup> party test facilities (Year 2 3)
  - $\circ$  Work with a demonstration partner to highlight SSP-21 capabilities

# **Next Steps for this Project**

#### Year 1

- Collect initial SSP-21 communications network and performance data
- Conduct SSP-21 parameter study Skyfall Laboratory
- Build network model in NS-3
- Build SSP-21 model for NS-3
- SSP-21 Network Characterization Whitepaper

#### Year 2


- Run characterization tests of communications between SSP-21 enabled devices and those without SSP-21
- Iteratively design IKI specification and reference implementation
- Conduct analysis of potential grid impacts caused by network impacts (if any)
- Refine SSP-21 specification if necessary
- Implement IKI and SSP-21 enhancements in NS-3
- Conduct analysis of potential grid impacts caused by network impacts (if any)
- Refine IKI and SSP-21 specifications if necessary

#### Year 3

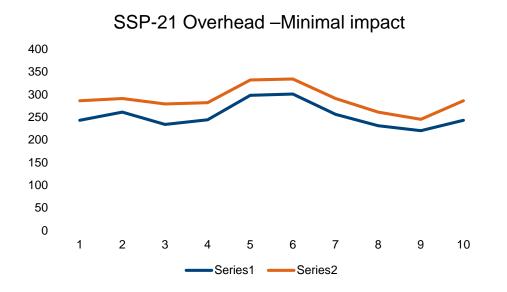
- Implement IKI and SSP-21 enhancements in NS-3
- Run characterization tests of communications between IKI system, SSP-21 enabled devices and those without SSP-21
- Conduct analysis of potential grid impacts caused by network impacts (if any)
- Final report



## Virtual Machine Based SSP-21 Bump–in–the-Wire Evaluation



Qemu Emulator RedHat Linux 7.0 DNP3 Activity Model <u>Test Environment 2</u> Virtualbox Hypervisor Ubuntu Linux 16.04 HTTP Activity Model


247



# Validating SSP-21 Requirements

## SSP-21 Requirements (SSP-21 Documentation)

- Low overhead and processing compared to TLS /RSA / x509
  - Lower CPU and bandwidth for embedded systems.



#### Evaluation Metrics:

- # of packets
- Time connected
- Bytes Sent
- Average packet size
- Average Inter-packet arrival time
- Data byte rate
- Data bit rate

U.S. DEPARTMENT OF