U.S. DEPARTMENT OF **ENERGY** OFFICE OF **CYBERSECURITY, ENERGY SECURITY, AND EMERGENCY RESPONSE**

Trusted Relay Node Networking Los Alamos National Laboratory (LANL)

Raymond Newell PhD

Cybersecurity for Energy Delivery Systems Peer Review

November 6-8, 2018

Summary: Trusted Relay Node Networking

Objective

• We will demonstrate that a succession of quantumsecured links, joined by relay nodes located in physically-secured locations, can overcome existing distance limitations.

Schedule

- Start Feb 2018, end Feb 2021
- Field tests:
 - Q1 2019 (TBD)
 - Q1 2020
 - Q4 2020
- Demonstrate interoperability of different Quantum Communication systems
- Bring security benefits of quantum communications to long-range links
- Show that quantum communication systems can exchange cryptographic key material over different physicallayer implementations

Advancing the State of the Art (SOA)

- Existing quantum links are limited in range to ~100 miles, in practice much less. We will demonstrate that a succession of such links, joined by relay nodes located in physically-secured locations, can overcome this limitation.
- Nationwide deployment of quantum technologies will require interoperable systems from multiple vendors. An operator must be able to "plug-andplay" a quantum device without regard for the underlying physics. It is essential to deploy quantum technologies without the undue burden on operators that would result from disparate technologies

Advancing the State of the Art (SOA)

The primary objective of this effort will be to develop and demonstrate a three-node network extending quantum communications by building and deploying trusted relay nodes. This work will address two existing impediments to widespread implementation of quantum communications technology: limitations on the maximum link range, and non-interoperable implementations. By developing and implementing a systems-level approach to interoperable trusted relay nodes, we will bring the security assurances of quantum communication systems to long-haul distances.

Challenges to Success

Lack of existing Quantum Communication standards

- There are several competing standards for classical key management and authentication, and very many homebrew solutions. But no standards are dedicated to quantum comms.
- The team has agreed on a standard keyfile format, with metadata in a header, 256-bit keys, and checksum

Sensitive equipment in a harsh environment

- Quantum signals are inherently weak, so detection equipment must be sensitive
- Reliable operation in a substation environment is challenging: thermal range, vibration, and EMF can be challenging
- The team includes seasoned engineers with decades experience in design for harsh environments

Progress to Date

Major Accomplishments

• Site visit and technical working meeting, July 2018

Photographs of optical fiber patch panel at EPB's Riverside and Tennessee Tech power distribution substations. Duplex SMF28e+ single mode fiber with LC terminators.

• Agreement on keyfile data format

Collaboration/Technology Transfer

Plans to transfer technology/knowledge to end user

- Industry acceptance will be pursued by
 - 1. Establishing strong IP portfolio (13 granted, 26 pending at last count)
 - 2. Licensing agreements with commercialization parts (negotiations ongoing)
 - Cooperative Research and Development Agreements with partners to transition technology out of LANL
 - 4. Mature products available for sale to asset owners

	 ¹⁹⁾ United States ¹²⁾ Patent Applic: NORDHOLT et al. 	ation Publicat	US 2 ion (10) Pub (43) Pub	0160328211A1 . No.: US 2016/ . Date: No	0328211 A1 ov. 10, 2016
-	54) QUANTUM RANDOM GENERATORS	NUMBER	(60) Provision 30, 2011.	al application No. 61/54	1,675, filed on Sep
	 Applicant: Los Alamos N Los Alamos, N 	ational Security, LLC, M (US)	(51) Int (1	Publication Classificat	ion
	(72) Inventors: Jane Elizabeth	NORDHOLT, Los	US0090020	09B2	
(12) United States Patent Nordholt et al.		(10) Pate (45) Date	nt No.: of Patent:	US 9,002,009 Apr. 7,	9 B2 is 2015 g
(54) QUANTUM KEY CARD, BASE STA AUTHORITY	DISTRIBUTION USING	6,748,083 7,515,716 7,587,654 7,627,126	B2 6/2004 Hu B1 4/2009 Ell B2 9/2009 Mu B1 12/2009 Pb B2 6/2010 Ba	ghes et al. iott itsumoto ialo et al.	
(75) Inventors: Jane El	zabeth Nordholt, Les Alam				
(12) Unite Nordhol (*) (54) GREAT C POLARIZ	d States Paten t et al. IRCLE SOLUTION TO ATION-BASED QUANTUR	t (10) (45) u (56)	Patent No.: Date of Pat Ref	US 9,28 ent: Mai	7,994 B2 r. 15, 2016
(75) Inventors:	SICATION (QC) IN OPTIC Jane Elizabeth Nordholt J	AL FIBER	0.5. PAT	200 Bushes at al	
United States Patent Applica ^{Hughes et al.}	tion Publicatio	US 201502 (10) Pub. No. (43) Pub. Dat	22619A1 : US 2015/ e: /	0222619 A1 Aug. 6, 2015	
MULTI-FACTOR AUTHENTICATION USING QUANTUM COMMUNICATION		Publication Classification			Aistribu-
Applicant: Los Alamos Nat Los Alamos, NM Inventors: Richard John H	ional Security, LLC, (US) ughes, Los Alamos,	(51) INC. CL H04L 29/06 H04L 9/08 H04L 9/32 G06F 21/31	(2006.01) (2006.01) (2006.01) (2006.01)		ckering
NM (US); Charl Alamos, NM (US) Baltimore, MD (Los Alamos, NM Santa Barbara, C Thorson Newell Bolando D. Som	es Glen Peterson, Los 5): James T. Thrasher, US): Jane E. Nordholt, (US): Jon T. Yard, A (US): Raymond Santa Fe, NM (US): ma. Santa Fe, NM (US):	(52) U.S. CL CPC	H04L 63/08 (20 01); H04L 63/08 (2013.01); H04L H04 ABSTRACT	13.01); G06F 21/31 83 (2013.01); H04L L 9/3226 (2013.01); L 9/3236 (2013.01)	
Assignce: LOS ALAMOS SECURITY, LL (US)	NATIONAL C, Los Alamos, NM	Multi-factor authentica ("QC") includes stages example, a user enrolls uses QC with a trusted a mits device factor infor	tion using quant for enrollment an for multi-factor authority. The tru mation associates	um communication d identification. For authentication that sted authority trans- d with a user device	

Next Steps for this Project

In December 2018 or January 2019 (exact date TBD) we will transport our Quantum Hardware Security Module system to EBP for integration and testing with a comparable system delivered by ORNL.

AND EMERGENCY RESPONSE

80 km range would enable 70% of ESNet's links

This is a histogram of all 734 fiber spans that comprise ESnet, sorted according to span length.

Histogram 80-

A cumulative histogram of the same data set shows that 70% of all spans are 80km or less.

Data courtesy of Christopher Tracy, ESnet LBNL. Thanks to Sean Peisert.

A graded approach

This talk

Trusted Relay Nodes

Fully quantum links Classical relay Building is assumed to be secure

Next talk

Trust*worthy* Relay Nodes

Fully quantum links Classical relay Classical Crypto + Physically Unclonable Functions No secure building needed k

Quantum Repeaters

Fully quantum links Fully quantum relay

Outside of scope for OE (but very worthwhile!)

