U.S. DEPARTMENT OF OFFICE OF CYBERSECURITY, ENERGY SECURITY, AND EMERGENCY RESPONSE

Optimal Grid Design for Cyber-Physical Resiliency Los Alamos National Laboratory (LANL)

Hassan Lionel Hijazi

Cybersecurity for Energy Delivery Systems Peer Review

November 6-8, 2018

Summary: Optimal Grid Design for Cyber-Physical Resiliency

Objective

 Optimal placement of trust-worthy nodes and secure quantum links in order to minimize the impact of cyber-physical attacks on the power grid.

Schedule

- 10/2017-10/2020
- Key deliverables and dates expected/met
- A design-support software tool that can help decision makers in adopting evidence-based investment strategies

Advancing the State of the Art (SOA)

- Current SOA consists in linearizing power flow equations leading to weak approximations and sub-optimal investment decisions
- We will rely on exact mathematical models of the alternating current power flow equations proven to be sufficiently accurate
- We will implement realistic models on how the grid reacts to adversarial attacks
- Decision makers will have mathematical optimality guarantees when it comes to investing in building high-cost quantum channels and trustworthy nodes.
- With a flexible and reliable software tool that can optimize over the AC power flow equations, decision-makers can formulate and solve any decision-support problem.

Build a scalable modeling tool for optimal grid design

• We are developing <u>Gravity</u>, an open-source, scalable modeling framework with state-of-the-art performance on AC power flow optimization.

Understanding the interdependency between communication and physical layers

Collaborating with SCADA experts to understand and model these interdependencies

Formulating the underlying mathematical optimization models and designing scalable algorithms

• We have an initial formulation based on multi-stage mixed-integer nonlinear programming and initial solution techniques inspired by alternating attacker-defender algorithms.

Progress to Date

Major Accomplishments

- Literature review and first mathematical formulation
- Implementation of AC power flow models in Gravity
- Development of convex relaxations for AC power flow equations (needed to provide optimality guarantees)
- Connecting <u>Gravity</u> to state-of-the-art mathematical optimization solvers.

Collaboration/Technology Transfer

Plans to transfer technology/knowledge to end user

- Targeted end user: Investment Decision Makers in Grid Operators
- What are your plans to gain industry acceptance?
 - Compare our formulations with state-of-the-art power flow simulation tools, e.g., <u>GridLAB-D</u>
 - Reach out to industrial partners and test our algorithms on realistic data

Next Steps for this Project

Approach for the next year or to the end of project

- Formulate the multi-stage attacker-defender problem in Gravity

- Develop scalable algorithms for solving the problem

