The Sky Glow Comparison Tool

BRUCE KINZENY
Pacific Northwest National Laboratory
SSL Program Webinar Series, November 8, 2018
Much concern raised in recent years regarding LED street lighting conversions and perceived increases in sky glow and associated effects.

Most projections not based on realistic assumptions for U.S. conversion projects, vis-à-vis field experience to date.

The commonly proposed remedy of limiting CCT involves a potentially significant energy penalty among other possible tradeoffs, while being of limited or no effectiveness.

The DOE SSL Program therefore conducted its own investigation of street lighting and sky glow in 2016-2017.

The investigation created a limited “universe” of results from 215,000+ runs of a well-known sky glow model.

Those results in turn led to the development of this simple tool.
Purpose of the Sky Glow Comparison Tool

- Up to now the outdoor lighting community has had:
 - No simple means of evaluating their impact on sky glow, positive or negative.
 - No way to test the validity of assertions by others.
 - No real means of working with SPD.

- The sky glow tool is a first-order approach to addressing these gaps, using standard inputs and outputs familiar to a lighting audience.

- The tool enables relative comparisons between impacts of different lighting system characteristics, specifically: uplight, lumen output, and spectral content (SPD), under a limited set of input conditions.

- Intended to help identify the most effective means for addressing sky glow associated with an individual system or design.

- The outputs are provided in terms relative to the selected baseline, and are *not absolute*.
Derived from 215,000+ runs of Skyglow Simulator

Variable parameters investigated include:
- 3 cities of varying population (3,500 to 500,000)
- 2 lumen output levels
- 2 emission functions (Garstang or cosine)
- 5 atmospheric conditions (4 clear with increased loading, 1 cloudy)
- 11 SPDs
- 4 uplight percentages (0%, 2%, 5%, 10%)
- 2 observer locations
- 2 output types (non-weighted irradiance or scotopic illuminance)
- full visible spectrum in 80 increments (5 nm each)

=> ~215,000 runs
Scattering functions drive the spreadsheet

- 48 separate scattering functions were derived from the results, one for each of the different possible combinations of input conditions.
- Any SPD can now be input and results are calculated by interpolating among the 5 nm results for the given scattering function (i.e., the selected set of input conditions).

![Input Conditions Form]

- **1. Scenario Parameters**
 - Observer location
 - Atmospheric condition
 - Weighting function
- **2. Baseline Light Source Characteristics**
 - Percent upright
 - Baseline source
- **3. Comparison Light Source(s) Characteristics**
 - Percent upright
 - Lumen output (% of baseline)
The Sky Glow Comparison Tool

- Simple inputs/outputs familiar to the lighting community.

Different tabs for different steps
Procedure

1. Select or input Spectral Power Distributions (SPDs) of products to be compared

"SPD Input" Tab

CCT Calculator

Input Wavelength & Value in any increments

The tool interpolates/averages to 5 nm increments and then normalizes to 1000 lumens
Procedure

2. Choose parameters / characteristics and click “Calculate”

“Calculate” Tab

The SPDs being compared show a relative sky glow “score,” compared to the baseline

Graphs of Source SPDs

Relative sky glow score displayed graphically
Procedure

- Graphics of both Source SPDs and Sky Glow SPDs are displayed

Calculate Tab

All SPDs that were evaluated in this run

Can be filtered to only display selected sources of interest (click on chart, then press “Filter” button, make selections and press “Apply”)
Inherent Limitations of the Comparison Tool

- The universe of results is “fixed,” e.g.,
 - 3 sets of atmospheric conditions are substituting for virtually infinite variability in reality
 - Results only modeled at two observer locations, at edge of city and 40 km distant from city center
 - Light output characteristics of luminaires are only approximate, e.g., 0%, 2%, 5%, 10% uplight
 - It’s not a model! Best used for comparison between scenarios to investigate relative effects rather than absolute

- Original investigation focused on street and area lighting; other significant contributors to sky glow (e.g., buildings, signage) are probably not represented

- The results reflect the state of the model in early 2017; ongoing updates are continuous
The Sky Glow Comparison Tool can be requested from the DOE Solid-State Lighting Website (https://www.energy.gov/eere/ssl/potential-impacts-led-street-lighting-sky-glow)

Questions, bug reports, etc. can be sent to skyglowtool@pnnl.gov