

Proudly Operated by **Battelle** Since 1965

The Sky Glow Comparison Tool

BRUCE KINZEY

Pacific Northwest National Laboratory SSL Program Webinar Series, November 8, 2018

- Much concern raised in recent years regarding LED street lighting conversions and perceived increases in sky glow and associated effects.
- Most projections not based on realistic assumptions for U.S. conversion projects, vis-à-vis field experience to date.
- The commonly proposed remedy of limiting CCT involves a potentially significant energy penalty among other possible tradeoffs, while being of limited or no effectiveness.
- The DOE SSL Program therefore conducted its own investigation of street lighting and sky glow in 2016-2017.
- The investigation created a limited "universe" of results from 215,000+ runs of a well-known sky glow model.
- Those results in turn led to the development of this <u>simple</u> tool.

Purpose of the Sky Glow Comparison Tool

- Up to now the outdoor lighting community has had:
 - No simple means of evaluating their impact on sky glow, positive or negative.
 - No way to test the validity of assertions by others.
 - No real means of working with SPD.
- The sky glow tool is a first-order approach to addressing these gaps, using standard inputs and outputs familiar to a lighting audience.
- The tool enables relative comparisons between impacts of different lighting system characteristics, specifically: uplight, lumen output, and spectral content (SPD), under a limited set of input conditions.
- Intended to help identify the most effective means for addressing sky glow associated with an individual system or design.
- ▶ The outputs are provided in terms relative to the selected baseline, and are *not absolute*.

Derived from 215,000+ runs of Skyglow Simulator

- Variable parameters investigated include:
 - **3** cities of varying population (3,500 to 500,000)
 - 2 lumen output levels
 - 2 emission functions (Garstang or cosine)
 - 5 atmospheric conditions (4 clear with increased loading, 1 cloudy)
 - 11 SPDs
 - 4 uplight percentages (0%, 2%, 5%, 10%)
 - 2 observer locations
 - 2 output types (non-weighted irradiance or scotopic illuminance)
 - full visible spectrum in 80 increments (5 nm each)

■ => ~215,000 runs

Scattering functions drive the spreadsheet

- 48 separate scattering functions were derived from the results, one for each of the different possible combinations of input conditions
- Any SPD can now be input and results are calculated by interpolating among the 5 nm results for the given scattering function (i.e., the selected set of input conditions)

INPUT CONDITIONS						
1. Scenario Parameters						
Obs	near					
Atmosph	clear low particulate					
Weig	scotopic					
2. Baseline Light Source Characteristics						
P	0%					
E	1. HPS Example					
3. Comparison Light Source(s) Characteristics						
F	0%					
Lumen output	100%					
Clear	Calculate					

Pacific North

NATIONAL LABORATORY
Proudly Operated by **Battelle** Since 1965

The Sky Glow Comparison Tool

Different tabs

for different

steps

Proudly Operated by **Battelle** Since 1965

Simple inputs/outputs familiar to the lighting community.

Procedure

Value in any increments

1. Select or input Spectral Power Distributions (SPDs) of products to be compared "SPD Input" Tab

Add a New S Paste values in shad or use the dropdow Add Past (You will be prom	ed cells and click " n to add a saved SP ed SPD	SPDs for Calculation SPDs require normalization to equal lumen output. Do not paste SPDs directly. All SPDs loaded here will be included in the calculation (see "Calculate" sheet) Clearing SPDs cannot be undone. If needed for future calculations, click the Save button to copy an SPD to the Saved SPDs sheet. Clear All SPDs									
Paste Values	Paste Values		SPD No.	1 Clear	Save	2 Clear Save	3 Clear Save	4 Clear Sa	ave 5 Clear Save	6 Clear Save	
			Calculated CCT	ССТ = 2661 К		ССТ = 2719 К	ССТ = 3008 К	ССТ = 3070 К	ССТ = 3005 К	ССТ = 3941 К	🛛 🗕 CCT Calculator
Wavelength (nm)	Spectral Power		Wavelength (nm)			LED 2719 K	LED 3008 K	LED 3070 K	LED V Pump 3005 K	LED 3941 K	
			380	0.0000		0.0003	0.0002 0.0004	0.0003	0.0002 0.0003	0.0000	
			390	0.0000		0.0003	0.0002	0.0003	0.0003	0.0001	
				0.0000		0.0003	0.0002	0.0003	0.0005	0.0001	
			400	0.0000		0.0003	0.0002	0.0003	0.0010	0.0002	
			405	0.0000		0.0003	0.0002	0.0003	0.0024	0.0004	
			410	0.0000		0.0003	0.0002	0.0004	0.0051	0.0009	
			415	0.0001		0.0005	0.0004	0.0008	0.0078	0.0019	
			420	0.0002		0.0007	0.0009	0.0013	0.0085	0.0038	
				0.0005		0.0013	0.0017	0.0026	0.0078	0.0066	
				0.0011 0.0021		0.0019 0.0029	0.0028 0.0041	0.0039	0.0070 0.0063	0.0096 0.0123	
				0.0021		0.0029	0.0041	0.0081	0.0059	0.0123	
			440	0.0060		0.0053	0.0079	0.0098	0.0056	0.0128	
			450	0.0085		0.0068	0.0101	0.0113	0.0052	0.0080	
			455	0.0083		0.0065	0.0103	0.0088	0.0048	0.0042	
				1		1	1	I	i	1	
Input	Wave	length &	Т	he	too	l interp	olates	/avera	ages to 5	5 nm	

increments and then normalizes to 1000 lumens

7

Procedure

2. Choose parameters / characteristics and click "Calculate"

Graphs of Source SPDs

"score," compared to the baseline

RESULTS						
[Add new SPDs using the "SPD Input" sheet]						
Source Label	Relative Sky Glow					
BASELINE: HPS Example	1.00					
1. HPS Example	1.00					
2. MH 2 4041K	1.79					
3. MV H38JA-100/DX	1.74					
4. LED 2719 K	1.30					
5. LED V Pump 2724 K	1.58					
6. LED 285 4075K	1.41					
7. LED 231 4224K	1.47					
8. LED Example 5	1.50					

Relative sky glow score displayed graphically

Procedure

Graphics of both Source SPDs and Sky Glow SPDs are displayed

Calculate Tab

All SPDs that were evaluated in this run

Can be filtered to only display selected sources of interest (click on chart, then press "<u>Filter</u>" button, make selections and press "<u>Apply</u>")

Live Demo

Proudly Operated by **Battelle** Since 1965

Inherent Limitations of the Comparison Tool

Proudly Operated by Battelle Since 1965

The universe of results is "fixed," e.g.,

- 3 sets of atmospheric conditions are substituting for virtually infinite variability in reality
- Results only modeled at two observer locations, at edge of city and 40 km distant from city center
- Light output characteristics of luminaires are only approximate, e.g., 0%, 2%, 5%, 10% uplight
- It's not a model! Best used for comparison between scenarios to investigate <u>relative</u> effects rather than absolute
- Original investigation focused on street and area lighting; other significant contributors to sky glow (e.g., buildings, signage) are <u>probably not</u> <u>represented</u>
- The results reflect the state of the model in early 2017; ongoing updates are continuous

Thank you

- The Sky Glow Comparison Tool can be requested from the DOE Solid-State Lighting Website (<u>https://www.energy.gov/eere/ssl/</u> <u>potential-impacts-led-street-</u> <u>lighting-sky-glow</u>)
- Questions, bug reports, etc. can be sent to <u>skyglowtool@pnnl.gov</u>

