## **Biomass Energy Overview**

**BIOMASS** 



**Biomass Resource Benefits** 

1



### **Biomass Resource – Forest Residues**

Woody biomass represented 19% of the renewable energy generated in 2017 (slide 4) – a large portion of that is biomass waste being burned to dry timber for paper, pulp and furniture industries.



**BIOMASS** 

## **Biomass Resource – Primary Mill Residues**

#### Energy content varies depending upon species, moisture and density: 8-12,000 BTU/ dry pound



**BIOMASS** 

#### **Benefits:**

- Uses local renewable energy / fuel source (typically ~50 miles is considered a maximum distance to economically viable woody biomass)
- Larger-scale systems burn more cleanly that "residential woodstove" – virtually no visible emissions or odors
- Wood chips for fuel can often come from sawmill, timber harvesting, or land development residues – these are essentially low-grade waste products turned into cost-saving fuel - e.g., wood pellets ---- >>



A wood heating system for 200,000 ft<sup>2</sup> building (school) has emissions  $\approx$  5 residential wood-burning stoves (~10,000 ft<sup>2</sup>) That is a 20-to-1 reduction in emissions - larger system with higher temperatures results in cleaner burning

## **Biomass-burning Facilities in the US**



Source: https://www.biomasscenter.org/database/map-search

**BIOMASS** 

#### **Benefits:**

- Money spent on biomass keeps energy dollars re-circulating in the local economy and supports jobs in the local forest products industry
- Burning wood recycles carbon in the natural carbon cycle vs. burning fossil fuels which transfers dormant, underground carbon (crude oil, gas and coal) into the atmosphere

#### Townsend, Montana School District

School Wood Pellet Heating System Heating Capacity (output): 199 kW (0.68 MMBtu/hr) Annual Wood Pellet Use: 200-300 tons Year Installed: 2007 Thermal Output: Hot water Replaced: Fuel Oil system Funding: \$46k internal; Fuels for Schools grant - \$198k; Local conservation district grant -\$14k; USDA low-interest loan - \$140k. Total Cost: \$432k Payback

Lessons Learned: Fuel quality is important – whole tree pellets are not as consistent as sawmill waste pellets. Worth paying extra for sawmill pellets

#### Plusses:

- Biomass feedstock for heating does not have to be as "clean" and "consistent" as biomass for making electricity, CHP or biofuels.
- Automatic loading systems greatly reduces labor time needed to operation & maintain these systems compared to earlier "manual load" systems – typically 1/2-1 hr per day

### Negatives:

- Generally requires some "yard space" for storing fuel
- Fuel stock needs to be rotated don't want same feedstock sitting in back of yard for years
- Even automated 'loading systems' usually require some degree of manual oversight and/or maintenance – 1/2 -1 hr per day

#### **Caveats:**

- Economics depends on the cost of the fuel being replaced
- Switching to biomass usually best if replacing electric heat (which can be expensive – particularly in the northeast) or fuel oil
- Usually more challenging if replacing gas

#### **Typical Costs:**

- Biomass heating plants have installed costs that typically average between \$500 to \$1500 per kW-thermal of installed heating rate capacity.
- As these involve mature technologies, costs are not expected to drop significantly in the short term.

#### **Typical Costs:**

- Levelized cost of energy for heating with biomass is typically \$10 to \$20 dollars per million Btu
- Highly dependent on the

   a) Feedstock cost and quality
   b) O&M costs

A series of augers and belts deliver the wood chips in storage to the combustion chamber

Source: https://www.wbdg.org/resources/biomass-heat



## **Micro-hydro Energy Overview**



## **Existing Dams with Hydropower Potential**

MICRO HYDRO



In the United States, there are about 80,000 dams of which only 2,400 produce power. The other dams are for recreation, stock/farm ponds, flood control, water supply, and irrigation.

Source: https://nhaap.ornl.gov/sites/default/files/NPD\_Map\_20131205.jpg

NATIONAL RENEWABLE ENERGY LABORATORY

### National Maps/Databases of Rivers, Streams and Flow Data



Intermittent Flashy 1 Unpredictable Perennial Perennial Runoff 1 Perennial Runoff 2 Super Stable GW Stable High Baseflow Intermittent Flashy SW Snowmelt 2 Perennial Flashy Intermittent Flashy 2 Western Coastal Runoff Stable High Runoff Harsh Intermittent Snowmelt 1 Glacial High Runoff

# Hydro Resources are Catalogued by Characteristics Hydro



#### Hydrologic Classes

Intermittent Flashy 1 Unpredictable Perennial Perennial Runoff 1 Perennial Runoff 2 Super Stable GW Stable High Baseflow Intermittent Flashy SW Snowmelt 2 Perennial Flashy Intermittent Flashy 2 Western Coastal Runoff Stable High Runoff Harsh Intermittent Snowmelt 1 Glacial High Runoff



### **Maps of Current Use of Water**



### **New Stream-reach Potential**



Most rigorous assessment of hydropower potential to date.

Did NOT make recommendations on feasibility of sites.

Any development consideration **must include ecological and social sustainability.** 

Resource capacity was estimated at **84.7 GW** with generation of **460 TWh/yr** 

### **Micro Hydropower - Resource**

MICRO HYDRO



Source: https://www.energy.gov/eere/water/types-hydropower-plants

## **Run of River Hydropower Approach**





Run-of-river hydro tries to minimize the impact to the natural flowing stream while still obtaining some of its immense and near-continuous power.

It channels some of the river to the water intake and into the penstock, generates power then releases it back into the river.

## **Battery Storage Overview**



## **Battery Storage by Application**

**BATTERIES** 



## **Battery Storage Technologies**

BATTERIES



System Power Ratings, Module Size

Discharge Time at Rated Power

## **Battery Storage Technologies**

**BATTERIES** 



# Services Provided by Electricity Storage BATTERIES



Over the next decade these are the areas most likely to benefit Tribes as residential and small commercial users.

## **Battery Storage by Application**

BATTERIES



A significant part of the increase is targeting the emerging electric vehicle (EV)market. Being able to operate 4-8 hours continuously for EV is similar to other bulk energy storage needs – commercial business, micro-grid, etc. R&D for one will benefit the other.



robi.robichaud@nrel.gov